hfapigo

package module
v1.3.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jul 14, 2023 License: MIT Imports: 10 Imported by: 20

README

Documentation

Index

Constants

View Source
const (
	AuthHeaderKey    = "Authorization"
	AuthHeaderPrefix = "Bearer "
)
View Source
const (
	MaxCandidateLabels       = 10
	RecommendedZeroShotModel = "facebook/bart-large-mnli"
)
View Source
const APIBaseURL = "https://api-inference.huggingface.co/models/"
View Source
const RecommendedAudioClassificationModel = "superb/hubert-large-superb-er"
View Source
const RecommendedConversationalModel = "microsoft/DialoGPT-large"
View Source
const RecommendedFillMaskModel = "bert-base-uncased"
View Source
const RecommendedImageClassificationModel = "google/vit-base-patch16-224"
View Source
const RecommendedImageSegmentationModel = "facebook/detr-resnet-50-panoptic"
View Source
const RecommendedImageToTextModel = "nlpconnect/vit-gpt2-image-captioning"
View Source
const RecommendedObjectDetectionModel = "facebook/detr-resnet-50"
View Source
const RecommendedQuestionAnsweringModel = "bert-large-uncased-whole-word-masking-finetuned-squad"
View Source
const (
	RecommendedRussianToEnglishModel = "Helsinki-NLP/opus-mt-ru-en"
)
View Source
const (
	RecommendedSentenceSimilarityModel = "sentence-transformers/all-MiniLM-L6-v2"
)
View Source
const RecommendedSpeechRecongnitionModelEnglish = "facebook/wav2vec2-large-960h-lv60-self"
View Source
const RecommendedTableQuestionAnsweringModel = "google/tapas-base-finetuned-wtq"
View Source
const (
	RecommendedTextClassificationModel = "distilbert-base-uncased-finetuned-sst-2-english"
)
View Source
const RecommendedTextGenerationModel = "gpt2-large"
View Source
const RecommendedTextToImageModel = "runwayml/stable-diffusion-v1-5"
View Source
const RecommendedTokenClassificationModel = "dbmdz/bert-large-cased-finetuned-conll03-english"
View Source
const RecommmendedSummarizationModel = "facebook/bart-large-cnn"

Variables

View Source
var APIKey = func() string { return "" }

Functions

func MakeHFAPIRequest

func MakeHFAPIRequest(jsonBody []byte, model string) ([]byte, error)

MakeHFAPIRequest builds and sends an HTTP POST request to the given model using the provided JSON body. If the request is successful, returns the response JSON and a nil error. If the request fails, returns an empty slice and an error describing the failure.

func MakeHFAPIRequestWithMedia

func MakeHFAPIRequestWithMedia(model, mediaFile string) ([]byte, error)

func SendTextToImageRequest added in v1.2.0

func SendTextToImageRequest(model string, request *TextToImageRequest) (image.Image, string, error)

Send a TextToImageRequest. If successful, returns the generated image object, format name, and nil. If unsuccessful, returns nil, "", and an error.

func SetAPIKey

func SetAPIKey(key string)

Types

type AggregationStrategy

type AggregationStrategy string
const (
	// Every token gets classified without further aggregation.
	AggregationStrategyNone AggregationStrategy = "none"

	// Entities are grouped according to the default schema (B-, I- tags get merged when the tag is similar).
	AggregationStrategySimple AggregationStrategy = "simple"

	// Same as the simple strategy except entities cannot end up with different tags. Entities will use the tag of the first token when there is ambiguity.
	AggregationStrategyFirst AggregationStrategy = "first"

	// Same as the simple strategy except entities cannot end up with different tags. Scores are averaged across tokens and then the maximum label is applied.
	AggregationStrategyAverage AggregationStrategy = "average"

	// Same as the simple strategy except entities cannot end up with different tags. Entity will be the token with the maximum score.
	AggregationStrategyMax AggregationStrategy = "max"
)

type AudioClassificationResponse

type AudioClassificationResponse struct {
	Score float64 `json:"score,omitempty"`
	Label string  `json:"label,omitempty"`
}

Response structure for audio classification endpoint

func SendAudioClassificationRequest

func SendAudioClassificationRequest(model, audioFile string) ([]*AudioClassificationResponse, error)

type Conversation

type Conversation struct {
	// The last outputs from the model in the conversation, after the model has run.
	GeneratedResponses []string `json:"generated_responses,omitempty"`

	// The last inputs from the user in the conversation, after the model has run.
	PastUserInputs []string `json:"past_user_inputs,omitempty"`
}

Used with ConversationalResponse

type ConversationalParameters

type ConversationalParameters struct {
	// (Default: None). Integer to define the minimum length in tokens of the output summary.
	MinLength *int `json:"min_length,omitempty"`

	// (Default: None). Integer to define the maximum length in tokens of the output summary.
	MaxLength *int `json:"max_length,omitempty"`

	// (Default: None). Integer to define the top tokens considered within the sample operation to create
	// new text.
	TopK *int `json:"top_k,omitempty"`

	// (Default: None). Float to define the tokens that are within the sample` operation of text generation.
	// Add tokens in the sample for more probable to least probable until the sum of the probabilities is
	// greater than top_p.
	TopP *float64 `json:"top_p,omitempty"`

	// (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling,
	// 0 mens top_k=1, 100.0 is getting closer to uniform probability.
	Temperature *float64 `json:"temperature,omitempty"`

	// (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized
	// to not be picked in successive generation passes.
	RepetitionPenalty *float64 `json:"repetition_penalty,omitempty"`

	// (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum.
	// Network can cause some overhead so it will be a soft limit.
	MaxTime *float64 `json:"maxtime,omitempty"`
}

Used with ConversationalRequest

func NewConversationalParameters

func NewConversationalParameters() *ConversationalParameters

func (*ConversationalParameters) SetMaxLength added in v0.0.1

func (c *ConversationalParameters) SetMaxLength(maxLength int) *ConversationalParameters

func (*ConversationalParameters) SetMaxTime added in v0.0.1

func (*ConversationalParameters) SetMinLength added in v0.0.1

func (c *ConversationalParameters) SetMinLength(minLength int) *ConversationalParameters

func (*ConversationalParameters) SetRepetitionPenalty added in v0.0.1

func (c *ConversationalParameters) SetRepetitionPenalty(penalty float64) *ConversationalParameters

func (*ConversationalParameters) SetTempurature

func (c *ConversationalParameters) SetTempurature(temperature float64) *ConversationalParameters

func (*ConversationalParameters) SetTopK added in v0.0.1

func (*ConversationalParameters) SetTopP added in v0.0.1

type ConversationalRequest

type ConversationalRequest struct {
	// (Required)
	Inputs ConverstationalInputs `json:"inputs,omitempty"`

	Parameters ConversationalParameters `json:"parameters,omitempty"`
	Options    Options                  `json:"options,omitempty"`
}

Request structure for the conversational endpoint

type ConversationalResponse

type ConversationalResponse struct {
	// The answer of the model
	GeneratedText string `json:"generated_text,omitempty"`

	// A facility dictionary to send back for the next input (with the new user input addition).
	Conversation Conversation `json:"conversation,omitempty"`
}

Response structure for the conversational endpoint

func SendConversationalRequest

func SendConversationalRequest(model string, request *ConversationalRequest) (*ConversationalResponse, error)

type ConverstationalInputs

type ConverstationalInputs struct {
	// (Required) The last input from the user in the conversation.
	Text string `json:"text,omitempty"`

	// A list of strings corresponding to the earlier replies from the model.
	GeneratedResponses []string `json:"generated_responses,omitempty"`

	// A list of strings corresponding to the earlier replies from the user.
	// Should be of the same length of GeneratedResponses.
	PastUserInputs []string `json:"past_user_inputs,omitempty"`
}

Used with ConversationalRequest

type FillMaskRequest

type FillMaskRequest struct {
	// (Required) a string to be filled from, must contain the [MASK] token (check model card for exact name of the mask)
	Inputs  []string `json:"inputs,omitempty"`
	Options Options  `json:"options,omitempty"`
}

Request structure for the Fill Mask endpoint

type FillMaskResponse

type FillMaskResponse struct {
	Masks []*FillMaskResponseEntry
}

Response structure for the Fill Mask endpoint

func SendFillMaskRequest

func SendFillMaskRequest(model string, request *FillMaskRequest) ([]*FillMaskResponse, error)

type FillMaskResponseEntry

type FillMaskResponseEntry struct {
	// The actual sequence of tokens that ran against the model (may contain special tokens)
	Sequence string `json:"sequence,omitempty"`

	// The probability for this token.
	Score float64 `json:"score,omitempty"`

	// The id of the token
	TokenID int `json:"token,omitempty"`

	// The string representation of the token
	TokenStr string `json:"token_str,omitempty"`
}

Used in the FillMaskResponse struct

type ImageClassificationResponse added in v1.1.0

type ImageClassificationResponse struct {
	// The label for the class (model specific)
	Label string `json:"label,omitempty"`

	// A float that represents how likely it is that the image file belongs to this class.
	Score float64 `json:"score,omitempty"`
}

func SendImageClassificationRequest added in v1.1.0

func SendImageClassificationRequest(model, imageFile string) ([]*ImageClassificationResponse, error)

type ImageSegmentationResponse added in v1.1.0

type ImageSegmentationResponse struct {
	// The label for the class (model specific) of a segment.
	Label string `json:"label,omitempty"`

	// A float that represents how likely it is that the segment belongs to the given class.
	Score float64 `json:"score,omitempty"`

	// A str (base64 str of a single channel black-and-white img) representing the mask of a segment.
	Mask string `json:"mask,omitempty"`
}

func SendImageSegmentationRequest added in v1.1.0

func SendImageSegmentationRequest(model, imageFile string) ([]*ImageSegmentationResponse, error)

type ImageToTextResponse added in v1.3.0

type ImageToTextResponse struct {
	// The generated caption
	GeneratedText string `json:"generated_text"`
}

func SendImageToTextRequest added in v1.3.0

func SendImageToTextRequest(model, imageFile string) ([]*ImageToTextResponse, error)

type ObjectBox

type ObjectBox struct {
	XMin int `json:"xmin,omitempty"`
	YMin int `json:"ymin,omitempty"`
	XMax int `json:"xmax,omitempty"`
	YMax int `json:"ymax,omitempty"`
}

type ObjectDetectionResponse

type ObjectDetectionResponse struct {
	// The label for the class (model specific) of a detected object.
	Label string `json:"label,omitempty"`

	// A float that represents how likely it is that the detected object belongs to the given class.
	Score float64 `json:"score,omitempty"`

	// Bounding box of the detected object
	Box ObjectBox
}

func SendObjectDetectionRequest

func SendObjectDetectionRequest(model, imageFile string) ([]*ObjectDetectionResponse, error)

type Options

type Options struct {

	// (Default: false). Boolean to use GPU instead of CPU for inference.
	// Requires Startup plan at least.
	UseGPU *bool `json:"use_gpu,omitempty"`

	// (Default: true). There is a cache layer on the inference API to speedup
	// requests we have already seen. Most models can use those results as is
	// as models are deterministic (meaning the results will be the same anyway).
	// However if you use a non deterministic model, you can set this parameter
	// to prevent the caching mechanism from being used resulting in a real new query.
	UseCache *bool `json:"use_cache,omitempty"`

	// (Default: false) If the model is not ready, wait for it instead of receiving 503.
	// It limits the number of requests required to get your inference done. It is advised
	// to only set this flag to true after receiving a 503 error as it will limit hanging
	// in your application to known places.
	WaitForModel *bool `json:"wait_for_model,omitempty"`
}

func NewOptions

func NewOptions() *Options

func (*Options) SetUseCache

func (opts *Options) SetUseCache(useCache bool) *Options

func (*Options) SetUseGPU

func (opts *Options) SetUseGPU(useGPU bool) *Options

func (*Options) SetWaitForModel

func (opts *Options) SetWaitForModel(waitForModel bool) *Options

type QuestionAnsweringInputs

type QuestionAnsweringInputs struct {
	// (Required) The question as a string that has an answer within Context.
	Question string `json:"question,omitempty"`

	// (Required) A string that contains the answer to the question
	Context string `json:"context,omitempty"`
}

type QuestionAnsweringRequest

type QuestionAnsweringRequest struct {
	// (Required)
	Inputs  QuestionAnsweringInputs `json:"inputs,omitempty"`
	Options Options                 `json:"options,omitempty"`
}

Request structure for question answering model

type QuestionAnsweringResponse

type QuestionAnsweringResponse struct {
	// A string that’s the answer within the Context text.
	Answer string `json:"answer,omitempty"`

	// A float that represents how likely that the answer is correct.
	Score float64 `json:"score,omitempty"`

	// The string index of the start of the answer within Context.
	Start int `json:"start,omitempty"`

	// The string index of the stop of the answer within Context.
	End int `json:"end,omitempty"`
}

Response structure for question answering model

func SendQuestionAnsweringRequest

func SendQuestionAnsweringRequest(model string, request *QuestionAnsweringRequest) (*QuestionAnsweringResponse, error)

type SentenceSimilarityInputs added in v1.0.0

type SentenceSimilarityInputs struct {
	// (Required) The string that you wish to compare the other strings with.
	// This can be a phrase, sentence, or longer passage, depending on the
	// model being used.
	SourceSentence string `json:"source_sentence,omitempty"`

	// A list of strings which will be compared against the source_sentence.
	Sentences []string `json:"sentences,omitempty"`
}

type SentenceSimilarityRequest added in v1.0.0

type SentenceSimilarityRequest struct {
	// (Required) Inputs for the request.
	Inputs  SentenceSimilarityInputs `json:"inputs,omitempty"`
	Options Options                  `json:"options,omitempty"`
}

Request structure for the Sentence Similarity endpoint.

type SentenceSimilarityResponse added in v1.0.0

type SentenceSimilarityResponse []float64

Response structure from the Sentence Similarity endpoint. The return value is a list of similarity scores, given as floats. Each list entry corresponds to the Inputs.Sentences list entry of the same index.

func SendSentenceSimilarityRequest added in v1.0.0

func SendSentenceSimilarityRequest(model string, request *SentenceSimilarityRequest) (*SentenceSimilarityResponse, error)

type SpeechRecognitionResponse

type SpeechRecognitionResponse struct {
	// The string that was recognized within the audio file.
	Text string `json:"text,omitempty"`
}

func SendSpeechRecognitionRequest

func SendSpeechRecognitionRequest(model, audioFile string) (*SpeechRecognitionResponse, error)

SendSpeechRecognitionRequest takes a model string and a path to an audio file. It reads the file and sends a request to the speech recognition endpoint.

type SummarizationParameters

type SummarizationParameters struct {
	// (Default: None). Integer to define the minimum length in tokens of the output summary.
	MinLength *int `json:"min_length,omitempty"`

	// (Default: None). Integer to define the maximum length in tokens of the output summary.
	MaxLength *int `json:"max_length,omitempty"`

	// (Default: None). Integer to define the top tokens considered within the sample operation to create
	// new text.
	TopK *int `json:"top_k,omitempty"`

	// (Default: None). Float to define the tokens that are within the sample` operation of text generation.
	// Add tokens in the sample for more probable to least probable until the sum of the probabilities is
	// greater than top_p.
	TopP *float64 `json:"top_p,omitempty"`

	// (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling,
	// 0 mens top_k=1, 100.0 is getting closer to uniform probability.
	Temperature *float64 `json:"temperature,omitempty"`

	// (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized
	// to not be picked in successive generation passes.
	RepetitionPenalty *float64 `json:"repetitionpenalty,omitempty"`

	// (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum.
	// Network can cause some overhead so it will be a soft limit.
	MaxTime *float64 `json:"maxtime,omitempty"`
}

Used with SummarizationRequest

func NewSummarizationParameters

func NewSummarizationParameters() *SummarizationParameters

func (*SummarizationParameters) SetMaxLength added in v0.0.1

func (sp *SummarizationParameters) SetMaxLength(maxLength int) *SummarizationParameters

func (*SummarizationParameters) SetMaxTime added in v0.0.1

func (sp *SummarizationParameters) SetMaxTime(maxTime float64) *SummarizationParameters

func (*SummarizationParameters) SetMinLength added in v0.0.1

func (sp *SummarizationParameters) SetMinLength(minLength int) *SummarizationParameters

func (*SummarizationParameters) SetRepetitionPenalty added in v0.0.1

func (sp *SummarizationParameters) SetRepetitionPenalty(penalty float64) *SummarizationParameters

func (*SummarizationParameters) SetTempurature

func (sp *SummarizationParameters) SetTempurature(temperature float64) *SummarizationParameters

func (*SummarizationParameters) SetTopK added in v0.0.1

func (*SummarizationParameters) SetTopP added in v0.0.1

type SummarizationRequest

type SummarizationRequest struct {
	// Strings to be summarized
	Inputs     []string                `json:"inputs,omitempty"`
	Parameters SummarizationParameters `json:"parameters,omitempty"`
	Options    Options                 `json:"options,omitempty"`
}

Request structure for the summarization endpoint

type SummarizationResponse

type SummarizationResponse struct {
	// The summarized input string
	SummaryText string `json:"summary_text,omitempty"`
}

Response structure for the summarization endpoint

func SendSummarizationRequest

func SendSummarizationRequest(model string, request *SummarizationRequest) ([]*SummarizationResponse, error)

type TableQuestionAnsweringInputs

type TableQuestionAnsweringInputs struct {
	// (Required) The query in plain text that you want to ask the table
	Query string `json:"query,omitempty"`

	// (Required) A table of data represented as a dict of list where entries
	// are headers and the lists are all the values, all lists must
	// have the same size.
	Table map[string][]string `json:"table,omitempty"`
}

type TableQuestionAnsweringRequest

type TableQuestionAnsweringRequest struct {
	Inputs  TableQuestionAnsweringInputs `json:"inputs,omitempty"`
	Options Options                      `json:"options,omitempty"`
}

Request structure for table question answering model

type TableQuestionAnsweringResponse

type TableQuestionAnsweringResponse struct {
	// The plaintext answer
	Answer string `json:"answer,omitempty"`

	// A list of coordinates of the cells references in the answer
	Coordinates [][]int `json:"coordinates,omitempty"`

	// A list of coordinates of the cells contents
	Cells []string `json:"cells,omitempty"`

	// The aggregator used to get the answer
	Aggregator string `json:"aggregator,omitempty"`
}

Response structure for table question answering model

func SendTableQuestionAnsweringRequest

func SendTableQuestionAnsweringRequest(model string, request *TableQuestionAnsweringRequest) (*TableQuestionAnsweringResponse, error)

type TextClassificationRequest

type TextClassificationRequest struct {
	// (Required) strings to be classified
	Inputs  []string `json:"inputs,omitempty"`
	Options Options  `json:"options,omitempty"`
}

Request structure for the Text classification endpoint

type TextClassificationResponse

type TextClassificationResponse struct {
	// HFAPI returns a list of labels and their associated scores for
	// each input.
	Labels []*TextClassificationResponseLabel
}

Response structure for the Text classification endpoint

func SendTextClassificationRequest

func SendTextClassificationRequest(model string, request *TextClassificationRequest) ([]*TextClassificationResponse, error)

type TextClassificationResponseLabel

type TextClassificationResponseLabel struct {
	// The label for the class (model specific)
	Name string `json:"label,omitempty"`

	// A float that represents how likely is that the text belongs in this class.
	Score float64 `json:"score,omitempty"`
}

Used in TextClassificationResponse

type TextGenerationParameters

type TextGenerationParameters struct {
	// (Default: None). Integer to define the top tokens considered within the sample operation to create new text.
	TopK *int `json:"top_k,omitempty"`

	// (Default: None). Float to define the tokens that are within the sample` operation of text generation. Add
	// tokens in the sample for more probable to least probable until the sum of the probabilities is greater
	// than top_p.
	TopP *float64 `json:"top_p,omitempty"`

	// (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling,
	// 0 means top_k=1, 100.0 is getting closer to uniform probability.
	Temperature *float64 `json:"temperature,omitempty"`

	// (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized
	// to not be picked in successive generation passes.
	RepetitionPenalty *float64 `json:"repetition_penalty,omitempty"`

	// (Default: None). Int (0-250). The amount of new tokens to be generated, this does not include the input
	// length it is a estimate of the size of generated text you want. Each new tokens slows down the request,
	// so look for balance between response times and length of text generated.
	MaxNewTokens *int `json:"max_new_tokens,omitempty"`

	// (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum.
	// Network can cause some overhead so it will be a soft limit. Use that in combination with max_new_tokens
	// for best results.
	MaxTime *float64 `json:"max_time,omitempty"`

	// (Default: True). Bool. If set to False, the return results will not contain the original query making it
	// easier for prompting.
	ReturnFullText *bool `json:"return_full_text,omitempty"`

	// (Default: 1). Integer. The number of proposition you want to be returned.
	NumReturnSequences *int `json:"num_return_sequences,omitempty"`
}

func NewTextGenerationParameters

func NewTextGenerationParameters() *TextGenerationParameters

func (*TextGenerationParameters) SetMaxNewTokens

func (params *TextGenerationParameters) SetMaxNewTokens(maxNewTokens int) *TextGenerationParameters

func (*TextGenerationParameters) SetMaxTime

func (params *TextGenerationParameters) SetMaxTime(maxTime float64) *TextGenerationParameters

func (*TextGenerationParameters) SetNumReturnSequences

func (params *TextGenerationParameters) SetNumReturnSequences(numReturnSequences int) *TextGenerationParameters

func (*TextGenerationParameters) SetRepetitionPenaly

func (params *TextGenerationParameters) SetRepetitionPenaly(penalty float64) *TextGenerationParameters

func (*TextGenerationParameters) SetReturnFullText

func (params *TextGenerationParameters) SetReturnFullText(returnFullText bool) *TextGenerationParameters

func (*TextGenerationParameters) SetTempurature

func (params *TextGenerationParameters) SetTempurature(temp float64) *TextGenerationParameters

func (*TextGenerationParameters) SetTopK

func (params *TextGenerationParameters) SetTopK(topK int) *TextGenerationParameters

func (*TextGenerationParameters) SetTopP

type TextGenerationRequest

type TextGenerationRequest struct {
	// (Required) a string to be generated from
	Inputs     []string                 `json:"inputs,omitempty"`
	Parameters TextGenerationParameters `json:"parameters,omitempty"`
	Options    Options                  `json:"options,omitempty"`
}

type TextGenerationResponse

type TextGenerationResponse struct {
	// A list of generated texts. The length of this list is the value of
	// NumReturnSequences in the request.
	GeneratedTexts []string
}

func SendTextGenerationRequest

func SendTextGenerationRequest(model string, request *TextGenerationRequest) ([]*TextGenerationResponse, error)

type TextToImageRequest added in v1.2.0

type TextToImageRequest struct {
	// The prompt or prompts to guide the image generation.
	Inputs     string                       `json:"inputs,omitempty"`
	Options    Options                      `json:"options,omitempty"`
	Parameters TextToImageRequestParameters `json:"parameters,omitempty"`
}

Request structure for text-to-image model

type TextToImageRequestParameters added in v1.2.2

type TextToImageRequestParameters struct {
	// The prompt or prompts not to guide the image generation.
	// Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
	NegativePrompt string `json:"negative_prompt,omitempty"`
	// The height in pixels of the generated image.
	Height int64 `json:"height,omitempty"`
	// The width in pixels of the generated image.
	Width int64 `json:"width,omitempty"`
	// The number of denoising steps. More denoising steps usually lead to a higher quality
	// image at the expense of slower inference. Defaults to 50.
	NumInferenceSteps int64 `json:"num_inference_steps,omitempty"`
	// Higher guidance scale encourages to generate images that are closely linked to the text
	// input, usually at the expense of lower image quality. Defaults to 7.5.
	GuidanceScale float64 `json:"guidance_scale,omitempty"`
}

type TokenClassificationParameters

type TokenClassificationParameters struct {
	// (Default: simple)
	AggregationStrategy *AggregationStrategy `json:"aggregation_strategy,omitempty"`
}

func NewTokenClassificationParameters

func NewTokenClassificationParameters() *TokenClassificationParameters

func (*TokenClassificationParameters) SetAggregationStrategy

func (params *TokenClassificationParameters) SetAggregationStrategy(aggregationStrategy AggregationStrategy) *TokenClassificationParameters

type TokenClassificationRequest

type TokenClassificationRequest struct {
	// (Required) strings to be classified
	Inputs     []string                      `json:"inputs,omitempty"`
	Parameters TokenClassificationParameters `json:"parameters,omitempty"`
	Options    Options                       `json:"options,omitempty"`
}

Request structure for the token classification endpoint

type TokenClassificationResponse

type TokenClassificationResponse struct {
	Entities []*TokenClassificationResponseEntity
}

Response structure for the token classification endpoint

func SendTokenClassificationRequest

func SendTokenClassificationRequest(model string, request *TokenClassificationRequest) ([]*TokenClassificationResponse, error)

type TokenClassificationResponseEntity

type TokenClassificationResponseEntity struct {
	// The type for the entity being recognized (model specific).
	Label string `json:"entity_group,omitempty"`

	// How likely the entity was recognized.
	Score float64 `json:"score,omitempty"`

	// The string that was captured
	Entity string `json:"word,omitempty"`

	// The offset stringwise where the answer is located. Useful to disambiguate if Entity occurs multiple times.
	Start int `json:"start,omitempty"`

	// The offset stringwise where the answer is located. Useful to disambiguate if Entity occurs multiple times.
	End int `json:"end,omitempty"`
}

type TranslationRequest

type TranslationRequest struct {
	// (Required) a string to be translated in the original languages
	Inputs []string `json:"inputs,omitempty"`

	Options Options `json:"options,omitempty"`
}

Request structure for the Translation endpoint

type TranslationResponse

type TranslationResponse struct {
	// The translated Input string
	TranslationText string `json:"translation_text,omitempty"`
}

Response structure from the Translation endpoint

func SendTranslationRequest

func SendTranslationRequest(model string, request *TranslationRequest) ([]*TranslationResponse, error)

type ZeroShotParameters

type ZeroShotParameters struct {
	// (Required) A list of strings that are potential classes for inputs. Max 10 candidate_labels,
	// for more, simply run multiple requests, results are going to be misleading if using
	// too many candidate_labels anyway. If you want to keep the exact same, you can
	// simply run multi_label=True and do the scaling on your end.
	CandidateLabels []string `json:"candidate_labels,omitempty"`

	// (Default: false) Boolean that is set to True if classes can overlap
	MultiLabel *bool `json:"multi_label,omitempty"`
}

Used with ZeroShotRequest

func (*ZeroShotParameters) SetMultiLabel

func (zsp *ZeroShotParameters) SetMultiLabel(multiLabel bool) *ZeroShotParameters

type ZeroShotRequest

type ZeroShotRequest struct {
	// (Required) Input or Inputs are required request fields
	Inputs []string `json:"inputs,omitempty"`

	// (Required)
	Parameters ZeroShotParameters `json:"parameters,omitempty"`

	Options Options `json:"options,omitempty"`
}

Request structure for the Zero-shot classification endpoint.

One of the following fields is required:

Input
Inputs

type ZeroShotResponse

type ZeroShotResponse struct {
	// The string sent as an input
	Sequence string `json:"sequence,omitempty"`

	// The list of labels sent in the request, sorted in descending order
	// by probability that the input corresponds to the to the label.
	Labels []string `json:"labels,omitempty"`

	// a list of floats that correspond the the probability of label, in the same order as labels.
	Scores []float64 `json:"scores,omitempty"`
}

Response structure from the Zero-shot classification endpoint.

func SendZeroShotRequest

func SendZeroShotRequest(model string, request *ZeroShotRequest) ([]*ZeroShotResponse, error)

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL