wfl

package module
v2.0.0-alpha2 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jul 3, 2020 License: BSD-2-Clause Imports: 15 Imported by: 0

README

wfl - A Simple and Pluggable Workflow Language for Go

Don't mix wfl with WFL.

CircleCI codecov

Update: In order to reflect the underlying drmaa2os changes which separates different backends more clearly the some context creation functions are moved to pkg/context. That avoids having to deal with dependencies from bigger libraries like Kubernetes or Docker when not using them.

Creating process, container, pod, task, or job workflows based on raw interfaces of operating systems, Docker, Singularity, Kubernetes, Cloud Foundry, and HPC job schedulers can be a tedios. Lots of repeating code is required. All workload management systems have a different API.

wfl abstracts away from the underlying details of the processes, containers, and workload management systems. wfl provides a simple, unified interface which allows to quickly define and execute a job workflow and change between different execution backends without changing the workflow itself.

wfl does not come with many features but is simple to use and enough to define and run jobs and job workflows with inter-job dependencies.

In its simplest form a process can be started and waited for:

    wfl.NewWorkflow(wfl.NewProcessContext()).Run("convert", "image.jpg", "image.png").Wait()

If the output of the command needs to be displayed on the terminal you can set the out path in the default JobTemplate (see below) configuration:

	template := drmaa2interface.JobTemplate{
		ErrorPath:  "/dev/stderr",
		OutputPath: "/dev/stdout",
	}
	flow := wfl.NewWorkflow(wfl.NewProcessContextByCfg(wfl.ProcessConfig{
		DefaultTemplate: template,
	}))
	flow.Run("echo", "hello").Wait()

Running a job as a Docker container requires a different context (and the image already pulled before).

    import (
	"github.com/dgruber/drmaa2interface"
	"github.com/dgruber/wfl"
	"github.com/dgruber/wfl/pkg/context/docker"
    )
    
    ctx := docker.NewDockerContextByCfg(docker.Config{DefaultDockerImage: "golang:latest"})
    wfl.NewWorkflow(ctx).Run("sleep", "60").Wait()

Starting a Docker container without a run command which exposes ports requires more configuration which can be provided by using a JobTemplate together with the RunT() method.

    jt := drmaa2interface.JobTemplate{
        JobCategory: "swaggerapi/swagger-editor",
    }
    jt.ExtensionList = map[string]string{"exposedPorts": "80:8080/tcp"}
    
    wfl.NewJob(wfl.NewWorkflow(docker.NewDockerContext())).RunT(jt).Wait()

Starting a Kubernetes batch job and waiting for its end is not much different.

    wfl.NewWorkflow(kubernetes.NewKubernetesContext()).Run("sleep", "60").Wait()

wfl aims to work for any kind of workload. It works on a Mac and Raspberry Pi the same way as on a high-performance compute cluster. Things missing: On small scale you probably miss data management - moving results from one job to another. That's deliberately not implemented. On large scale you are missing checkpoint and restart functionality or HA of the workflow process itself.

wfl works with simple primitives: context, workflow, job, and jobtemplate

Experimental: Jobs can also be processed in job control streams.

First support for logging is also available. Log levels can be controlled by environment variables (export WFL_LOGLEVEL=DEBUG or INFO/WARNING/ERROR/NONE). Applications can use the same logging facility by getting the logger from the workflow (workflow.Logger()) or registering your own logger in a workflow (workflow.SetLogger(Logger interface)). Default is set to ERROR.

Getting Started

Dependencies of wfl (like drmaa2) are vendored in. The only external package required to be installed manually is the drmaa2interface.

    go get github.com/dgruber/drmaa2interface

Context

A context defines the execution backend for the workflow. Contexts can be easily created with the New functions which are defined in the context.go file or in the separate packages found in pkg/context.

For creating a context which executes the jobs of a workflow in operating system processses use:

    wfl.NewProcessContext()

If the workflow needs to be executed in containers the DockerContext can be used:

    docker.NewDockerContext()

If the Docker context needs to be configured with a default Docker image (when Run() is used or RunT() without a configured JobCategory (which is the Docker image)) then the ContextByCfg() can be called.

    docker.NewDockerContextByCfg(docker.Config{DefaultDockerImage: "golang:latest"})

When you want to run the workflow as Cloud Foundry tasks the CloudFoundryContext can be used:

    cloudfoundry.NewCloudFoundryContext()

Without a config it uses following environment variables to access the Cloud Foundry cloud controller API:

For submitting Kubernetes batch jobs a Kubernetes context exists.

   ctx := kubernetes.NewKubernetesContext()

Note that each job requires a container image specified which can be done by using the JobTemplate's JobCategory. When the same container image is used within the whole job workflow it makes sense to use the Kubernetes config.

   ctx := kubernetes.NewKubernetesContextByCfg(kubernetes.Config{DefaultImage: "busybox:latest"})

Singularity containers can be executed within the Singularity context. When setting the DefaultImage (like in the Kubernetes Context) then then Run() methods can be used otherwise the Container image must be specified in the JobTemplate's JobCategory field separately for each job. The DefaultImage can always be overridden by the JobCategory. Note that each task / job executes a separate Singularity container process.

   ctx := wfl.NewSingularityContextByCfg(wfl.SingularityConfig{DefaultImage: ""}))

Contexts for other container engines or workload managers like DRMAA compatible HPC schedulers, etc. will be supported when the DRMAA2 job tracker implementation is available.

Workflow

A workflow encapsulates a set of jobs using the same backend (context). Depending on the execution backend it can be seen as a namespace.

It can be created by using:

    wf := wfl.NewWorkflow(ctx)

Errors during creation can be catched with

    wf := wfl.NewWorkflow(ctx).OnError(func(e error) {panic(e)})

or with

    if wf.HasError() {
        panic(wf.Error())
    }

Job

Jobs are the main objects in wfl. A job defines helper methods. Many of them return the job object itself to allow chaining calls in an easy way. A job can also be seen as a container and control unit for tasks.

Methods can be classified in blocking, non-blocking, job template based, function based, and error handlers.

Job Submission
Function Name Purpose Blocking Examples
Run() Starts a process, container, or submits a task and comes back immediately no
RunT() Like above but with a JobTemplate as parameter no
Resubmit() Submits a job n-times (Run().Run().Run()...) no
RunEvery() Submits a task every d time.Duration yes
RunEveryT() Like RunEvery() but with JobTemplate as param yes
Job Control
Function Name Purpose Blocking Examples
Suspend() Stops a task from execution (e.g. sending SIGTSTP to the process group)...
Resume() Continues a task (e.g. sending SIGCONT)...
Kill() Stops process (SIGKILL), container, task, job immediately.
Function Execution
Function Name Purpose Blocking Examples
Do() Executes a Go function yes
Then() Waits for end of process and executes a Go function yes
OnSuccess() Executes a function if the task run successfully (exit code 0) yes
OnFailure() Executes a function if the task failed (exit code != 0) yes
OnError() Executes a function if the task could not be created yes
Blocker
Function Name Purpose Blocking Examples
After() Blocks a specific amount of time and continues yes
Wait() Waits until the task submitted latest finished yes
Synchronize() Waits until all submitted tasks finished yes
Job Flow Control
Function Name Purpose Blocking Examples
ThenRun() Wait() (last task finished) followed by an async Run() partially
ThenRunT() ThenRun() with template partially
OnSuccessRun() Wait() if Success() then Run() partially  
OnSuccessRunT() OnSuccessRun() but with template as param partially
OnFailureRun() Wait() if Failed() then Run() partially  
OnFailureRunT() OnFailureRun() but with template as param partially
Retry() wait() + !success() + resubmit() + wait() + !success() yes  
AnyFailed() Cchecks if one of the tasks in the job failed yes  
Job Status and General Checks
Function Name Purpose Blocking Examples
JobID() Returns the ID of the submitted job no  
JobInfo() Returns the DRMAA2 JobInfo of the job no  
Template() no  
State() no  
LastError() no  
Failed() no  
Success() no  
ExitStatus() no  

JobTemplate

JobTemplates are specifying the details about a job. In the simplest case the job is specified by the application name and its arguments like it is typically done in the OS shell. In that case the Run() methods (ThenRun(), OnSuccessRun(), OnFailureRun()) can be used. Job template based methods (like RunT()) can be completely avoided by providing a default template when creating the context (...ByConfig()). Then each Run() inherits the settings (like JobCategory for the container image name and OutputPath for redirecting output to stdout). If more details for specifying the jobs are required the RunT() methods needs to be used. I'm using currently the DRMAA2 Go JobTemplate. In most cases only RemoteCommand, Args, WorkingDirectory, JobCategory, JobEnvironment, StageInFiles are evaluated. Functionality and semantic is up to the underlying drmaa2os job tracker.

The Template object provides helper functions for job templates and required as generators of job streams. For an example see here.

Examples

For examples please have a look into the examples directory. template is a canonical example of a pre-processing job, followed by parallel execution, followed by a post-processing job.

test is an use case for testing. It compiles all examples with the local go compiler and then within a Docker container using the golang:latest image and reports errors.

cloudfoundry demonstrates how a Cloud Foundry taks can be created.

Singularity containers can also be created which is helpful when managing a simple Singularity wfl container workflow within a single HPC job either to fully exploit all resources and reduce the amount of HPC jobs.

Creating a Workflow which is Executed as OS Processes

The allocated context defines which workload management system / job execution backend is used.

    ctx := wfl.NewProcessContext()

Different contexts can be used within a single program. That way multi-clustering potentially over different cloud solutions is supported.

Using a context a workflow can be established.

    wfl.NewWorkflow(wfl.NewProcessContext())

Handling an error during workflow generation can be done by specifying a function which is only called in the case of an error.

    wfl.NewWorkflow(wfl.NewProcessContext()).OnError(func(e error) {
		panic(e)
	})

The workflow is used in order to instantiate the first job using the Run() method.

    wfl.NewWorkflow(wfl.NewProcessContext()).Run("sleep", "123")

But you can also create an initial job like that:

    job := wfl.NewJob(wfl.NewWorkflow(wfl.NewProcessContext()))

For more detailed settings (like resource limits) the DRMAA2 job template can be used as parameter for RunT().

Jobs allow the execution of workload as well as expressing dependencies.

    wfl.NewWorkflow(wfl.NewProcessContext()).Run("sleep", "2").ThenRun("sleep", "1").Wait()

The line above executes two OS processes sequentially and waits until the last job in chain is finished.

In the following example the two sleep processes are executed in parallel. Wait() only waitf for the sleep 1 job. Hence sleep 2 still runs after the wait call comes back.

    wfl.NewWorkflow(wfl.NewProcessContext()).Run("sleep", "2").Run("sleep", "1").Wait()

Running two jobs in parallel and waiting until all jobs finished can be done Synchronize().

    wfl.NewWorkflow(wfl.NewProcessContext()).Run("sleep", "2").Run("sleep", "1").Synchronize()

Jobs can also be suspended (stopped) and resumed (continued) - if supported by the execution backend (like OS, Docker).

    wf.Run("sleep", "1").After(time.Millisecond * 100).Suspend().After(time.Millisecond * 100).Resume().Wait()

The exit status is available as well. ExitStatus() blocks until the previously submitted job is finished.

    wfl.NewWorkflow(ctx).Run("echo", "hello").ExitStatus()

In order to run jobs depending on the exit status the OnFailure and OnSuccess methods can be used:

    wf.Run("false").OnFailureRun("true").OnSuccessRun("false")

For executing a function on a submission error OnError() can be used.

More methods can be found in the sources.

Basic Workflow Patterns

Sequence

The successor task runs after the completion of the pre-decessor task.

    flow := wfl.NewWorkflow(ctx)
    flow.Run("echo", "first task").ThenRun("echo", "second task")
    ...

or

    flow := wfl.NewWorkflow(ctx)
    job := flow.Run("echo", "first task")
    job.Wait()
    job.Run("echo", "second task")
    ...
Parallel Split

After completion of a task run multiple branches of tasks.


    flow := wfl.NewWorkflow(ctx)
    flow.Run("echo", "first task").Wait()

    notifier := wfl.NewNotifier()

    go func() {
        wfl.NewJob(wfl.NewWorkflow(ctx)).
            TagWith("BranchA").
            Run("sleep", "1").
            ThenRun("sleep", "3").
            Synchronize().
            Notify(notifier)
    }

    go func() {
        wfl.NewJob(wfl.NewWorkflow(ctx)).
            TagWith("BranchB").
            Run("sleep", "1").
            ThenRun("sleep", "3").
            Synchronize().
            Notify(notifier)
    }

    notifier.ReceiveJob()
    notifier.ReceiveJob()

    ...
Synchronization of Tasks

Wait until all tasks of a job which are running in parallel are finished.

    flow := wfl.NewWorkflow(ctx)
    flow.Run("echo", "first task").
        Run("echo", "second task").
        Run("echo", "third task").
        Synchronize()

Synchronization of Branches

Wait until all branches of a workflow are finished.


    notifier := wfl.NewNotifier()

    go func() {
        wfl.NewJob(wfl.NewWorkflow(ctx)).
            TagWith("BranchA").
            Run("sleep", "1").
            Wait().
			Notify(notifier)
    }

    go func() {
        wfl.NewJob(wfl.NewWorkflow(ctx)).
            TagWith("BranchB").
            Run("sleep", "1").
            Wait().
			Notify(notifier)
    }

    notifier.ReceiveJob()
    notifier.ReceiveJob()

    ...
Exclusive Choice
    flow := wfl.NewWorkflow(ctx)
    job := flow.Run("echo", "first task")
    job.Wait()

    if job.Success() {
        // do something
    } else {
        // do something else
    }
    ...
Fork Pattern

When a task is finished n tasks needs to be started in parallel.

    job := wfl.NewWorkflow(ctx).Run("echo", "first task").
        ThenRun("echo", "parallel task 1").
        Run("echo", "parallel task 2").
        Run("echo", "parallel task 3")
    ...

or

    flow := wfl.NewWorkflow(ctx)
    
    job := flow.Run("echo", "first task")
    job.Wait()
    for i := 1; i <= 3; i++ {
        job.Run("echo", fmt.Sprintf("parallel task %d", i))
    }
    ...

For missing functionality or bugs please open an issue on github. Contributions welcome!

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func TmpFile

func TmpFile() string

TmpFile returns a path to a tmp file in the tmp dir which does not exist yet.

Types

type Context

type Context struct {
	CtxCreationErr     error
	SM                 drmaa2interface.SessionManager
	DefaultDockerImage string
	// defaultTemplate contains all default settings for job submission
	// which are copied (if not set) to Run() or RunT() methods
	DefaultTemplate drmaa2interface.JobTemplate
}

Context contains a pointer to execution backend and configuration for it.

func DRMAA2SessionManagerContext

func DRMAA2SessionManagerContext(sm drmaa2interface.SessionManager) *Context

DRMAA2SessionManagerContext creates a new Context using any given DRMAA2 Session manager (implementing the drmaa2interface).

func ErrorTestContext

func ErrorTestContext() *Context

ErrorTestContext always returns an error.

func NewProcessContext

func NewProcessContext() *Context

NewProcessContext returns a new *Context which manages processes.

func NewProcessContextByCfg

func NewProcessContextByCfg(cfg ProcessConfig) *Context

NewProcessContextByCfg returns a new *Context which manages processes which is configured by the ProcessConfig.

func NewSingularityContext

func NewSingularityContext() *Context

NewSingularityContext creates a new Context which allows to run the jobs in Singularity containers. It only works with JobTemplate based run methods (like RunT()) as it requires the JobCategory set to the the Singularity container image.

func NewSingularityContextByCfg

func NewSingularityContextByCfg(cfg SingularityConfig) *Context

NewSingularityContextByCfg creates a new Context which allows to run the jobs in Singularit containers. If the given SingularityConfig has set the DefaultImage to valid Singularity image then the Run() methods are using that container image. That image can be overriden by the RunT() method when setting the JobCategory.

func (*Context) Error

func (c *Context) Error() error

Error returns the error occurred during context creation.

func (*Context) HasError

func (c *Context) HasError() bool

HasError returns true if an error during context creation happened.

func (*Context) OnError

func (c *Context) OnError(f func(e error)) *Context

OnError executes a function when an error occurred during context creation with the error as parameter.

type Iterator

Iterator is a function which transforms a JobTemplate when called.

func NewEnvSequenceIterator

func NewEnvSequenceIterator(env string, start, incr int) Iterator

NewEnvSequenceIterator returns an iterator which increments the environment variable env each time when called.

func NewTimeIterator

func NewTimeIterator(d time.Duration) Iterator

NewTimeIterator returns a template iterator which return a job template every d time.

type Job

type Job struct {
	// contains filtered or unexported fields
}

Job defines methods for job life-cycle management. A job is always bound to a workflow which defines the context and job session (logical separation of jobs) of the underlying backend. The Job object allows to create an manage tasks.

func EmptyJob

func EmptyJob() *Job

EmptyJob creates an empty job.

func NewJob

func NewJob(wfl *Workflow) *Job

NewJob creates the initial empty job with the given workflow.

func (*Job) After

func (j *Job) After(d time.Duration) *Job

After blocks the given duration and continues by returning the same job.

func (*Job) AnyFailed

func (j *Job) AnyFailed() bool

AnyFailed returns true when at least job in the whole chain failed.

func (*Job) Do

func (j *Job) Do(f func(job drmaa2interface.Job)) *Job

Do executes a function which gets the DRMAA2 job object as parameter. This allows working with the low-level DRMAA2 job object.

func (*Job) Errored

func (j *Job) Errored() bool

Errored returns if an error occurred at the last operation.

func (*Job) ExitStatus

func (j *Job) ExitStatus() int

ExitStatus waits until the previously submitted task is finished and returns the exit status of the task. In case of an internal error it returns -1.

func (*Job) HasAnyFailed

func (j *Job) HasAnyFailed() bool

HasAnyFailed returns true if there is any failed task in the chain. Note that the functions implicitly waits until all tasks finsihed.

func (*Job) JobID

func (j *Job) JobID() string

JobID returns the job ID of the previously submitted job.

func (*Job) JobInfo

func (j *Job) JobInfo() drmaa2interface.JobInfo

JobInfo returns information about the last task/job. Which values are actually set depends on the DRMAA2 implementation of the backend specified in the context.

func (*Job) JobInfos

func (j *Job) JobInfos() []drmaa2interface.JobInfo

JobInfos returns all JobInfo objects of all tasks/job run in the workflow. JobInfo contains run-time details of the jobs. The availability of the values depends on the underlying DRMAA2 implementation of the execution Context.

func (*Job) Kill

func (j *Job) Kill() *Job

Kill stops the job from execution.

func (*Job) LastError

func (j *Job) LastError() error

LastError returns the error if occurred during last job operation. Don't use LastError() to find the reason why a job was failing! Check exit code / stderr output etc.

func (*Job) ListAllFailed

func (j *Job) ListAllFailed() []drmaa2interface.Job

ListAllFailed returns all tasks which failed as array of DRMAA2 jobs. Note that it implicitly waits until all tasks are finished.

func (*Job) Notify

func (j *Job) Notify(n *Notifier) *Job

func (*Job) Observe

func (j *Job) Observe(o Observer) *Job

Observe executes the functions defined in the Observer when task submission errors, the task failed, and when the job finished successfully. Note that this is a blocking call.

func (*Job) OnError

func (j *Job) OnError(f func(err error)) *Job

OnError executes the given function if the last Job operation resulted in an error (like a job submission failure).

func (*Job) OnFailure

func (j *Job) OnFailure(f func(job drmaa2interface.Job)) *Job

OnFailure executes the given function when the previous task in the list failed. Fails mean the job was started successfully by the system but then existed with an exit code != 0.

When running the task resulted in an error (i.e. the job run function errored), then the function is not executed.

func (*Job) OnFailureRun

func (j *Job) OnFailureRun(cmd string, args ...string) *Job

OnFailureRun submits a task when the previous task ended in a state different than drmaa2interface.Done.

func (*Job) OnFailureRunT

func (j *Job) OnFailureRunT(jt drmaa2interface.JobTemplate) *Job

OnFailureRunT submits a task when the previous job ended in a state different than drmaa2interface.Done.

func (*Job) OnSuccess

func (j *Job) OnSuccess(f func(job drmaa2interface.Job)) *Job

OnSuccess executes the given function after the previously submitted task finished in the drmaa2interface.Done state.

func (*Job) OnSuccessRun

func (j *Job) OnSuccessRun(cmd string, args ...string) *Job

OnSuccessRun submits a task when the previous task ended in the state drmaa2interface.Done.

func (*Job) OnSuccessRunT

func (j *Job) OnSuccessRunT(jt drmaa2interface.JobTemplate) *Job

OnSuccessRunT submits a task when the previous task ended in the state drmaa2interface.Done.

func (*Job) Resubmit

func (j *Job) Resubmit(r int) *Job

Resubmit starts the previously submitted task n-times. All tasks are executed in parallel.

func (*Job) Resume

func (j *Job) Resume() *Job

Resume continues a suspended job to continue execution.

func (*Job) Retry

func (j *Job) Retry(r int) *Job

Retry waits until the last task in chain (not for the previous ones) is finished. When it failed it resubmits it and waits again for a successful end.

func (*Job) RetryAnyFailed

func (j *Job) RetryAnyFailed(amount int) *Job

RetryAnyFailed reruns any failed tasks and replaces them with a new task incarnation.

func (*Job) Run

func (j *Job) Run(cmd string, args ...string) *Job

Run submits a task which executes the given command and args. The command needs to be available on the execution backend.

func (*Job) RunEvery

func (j *Job) RunEvery(d time.Duration, end time.Time, cmd string, args ...string) error

RunEvery provides the same functionally like RunEveryT but the job is created based on the given command with the arguments.

func (*Job) RunEveryT

func (j *Job) RunEveryT(d time.Duration, end time.Time, jt drmaa2interface.JobTemplate) error

RunEveryT submits a job every d time.Duration regardless if the previously job is still running or finished or failed. The method only aborts and returns an error if an error during job submission happened and the job could not be submitted.

func (*Job) RunT

func (j *Job) RunT(jt drmaa2interface.JobTemplate) *Job

RunT submits a task given specified with the JobTemplate.

func (*Job) State

func (j *Job) State() drmaa2interface.JobState

State returns the current state of the job previously submitted.

func (*Job) Success

func (j *Job) Success() bool

Success returns true in case the current task stated equals drmaa2interface.Done and the job exit status is 0.

func (*Job) Suspend

func (j *Job) Suspend() *Job

Suspend stops the last task of the job from execution. How this is done depends on the Context. Typically a signal (like SIGTSTP) is sent to the tasks of the job.

func (*Job) Synchronize

func (j *Job) Synchronize() *Job

Synchronize waits until the tasks of the job are finished. All jobs are terminated when the call returns.

func (*Job) Tag

func (j *Job) Tag() string

Tag returns the tag of the job.

func (*Job) TagWith

func (j *Job) TagWith(tag string) *Job

TagWith tags a job with a string for identification. Global for all tasks of the job.

func (*Job) Template

func (j *Job) Template() *drmaa2interface.JobTemplate

Template returns the JobTemplate of the previous job submission.

func (*Job) Then

func (j *Job) Then(f func(job drmaa2interface.Job)) *Job

Then waits until the previous task is terminated and executes the given function by providing the DRMAA2 job interface which gives access to the low-level DRMAA2 job methods.

func (*Job) ThenRun

func (j *Job) ThenRun(cmd string, args ...string) *Job

ThenRun waits until the previous task is terminated and executes then the given command as new task.

func (*Job) ThenRunT

func (j *Job) ThenRunT(jt drmaa2interface.JobTemplate) *Job

ThenRunT waits until the previous task is terminated and executes then a new task based on the given JobTemplate.

func (*Job) Wait

func (j *Job) Wait() *Job

Wait until the most recently task was finished.

type Notifier

type Notifier struct {
	// contains filtered or unexported fields
}

func NewNotifier

func NewNotifier() *Notifier

NewNotifier creates a job notifier which allows to synchronize multiple job workflows executed concurrently in go functions.

func (*Notifier) Destroy

func (n *Notifier) Destroy()

func (*Notifier) ReceiveJob

func (n *Notifier) ReceiveJob() *Job

func (*Notifier) SendJob

func (n *Notifier) SendJob(job *Job)

SendJob sends a job to the notifier.

type Observer

type Observer struct {
	ErrorHandler   func(error)
	FailedHandler  func(drmaa2interface.Job)
	SuccessHandler func(drmaa2interface.Job)
}

Observer is a collection of functions which implements behavior which should be executed when a task submission failed, when the task failed, or when then the job was running successfully.

func NewDefaultObserver

func NewDefaultObserver() Observer

NewDefaultObserver returns an Observer which panics when a task submission error occurred, prints a message and exits the application when the task exits with error code != 0, and prints a message and continues when a task was running successfully.

type ProcessConfig

type ProcessConfig struct {
	// DBFile is the local file which contains the internal state DB.
	DBFile string
	// DefaultTemplate contains the default job submission settings if
	// not overridden by the RunT() like methods.
	DefaultTemplate drmaa2interface.JobTemplate
}

ProcessConfig contains the configuration for the process context.

type SingularityConfig

type SingularityConfig struct {
	DefaultImage    string
	DBFile          string
	DefaultTemplate drmaa2interface.JobTemplate
}

SingularityConfig contains the default settings for the Singularity containers.

type Template

type Template struct {
	Jt drmaa2interface.JobTemplate
	// contains filtered or unexported fields
}

Template is a higher level job template for simplifying creating dynamically JobTemplates.

func NewTemplate

func NewTemplate(jt drmaa2interface.JobTemplate) *Template

NewTemplate creates a Template out of a drmaa2interface.JobTemplate

func (*Template) AddIterator

func (t *Template) AddIterator(name string, itr Iterator) *Template

AddIterator registers an interation function which transforms the internal JobTemplate into another JobTemplate. The function is called each time when Next() is called. Multiple Iterators can be registered. The execution order or the Iterators is undefined and does not depend on the registration order.

func (*Template) AddMap

func (t *Template) AddMap(name string, f Iterator) *Template

AddMap registers a mapping function (same as Iterator) which converts the underlying DRMAA2 JobTemplate into a specific form. In difference to the iterator functions it does not make any persistent changes to the job template. Its intention is to cover the differencens required in the job template so that a job can run on different backends.

func (*Template) MapTo

func (t *Template) MapTo(system string) drmaa2interface.JobTemplate

MapTo transforms the JobTemplate and returns it. It does not make changes to the underlying Template.

func (*Template) Next

Next applies all registered Iterators to the internal job template and returns the next version of the job template.

func (*Template) NextMap

func (t *Template) NextMap(name string) drmaa2interface.JobTemplate

NextMap applies all registered Iterators to the internal job template and finally does a temporary mapping of the job template with the mapping function specified.

type Workflow

type Workflow struct {
	// contains filtered or unexported fields
}

Workflow contains the backend context and a job session. The DRMAA2 job session provides typically logical isolation between jobs.

func NewWorkflow

func NewWorkflow(context *Context) *Workflow

NewWorkflow creates a new Workflow based on the given execution context. Internally it creates a DRMAA2 JobSession which is used for separating jobs.

func (*Workflow) Error

func (w *Workflow) Error() error

Error returns the error if happened during creating a job session or opening a job session.

func (*Workflow) HasError

func (w *Workflow) HasError() bool

HasError returns true if there was an error during creating a job session or opening a job session.

func (*Workflow) Logger

func (w *Workflow) Logger() log.Logger

Logger return the current logger of the workflow.

func (*Workflow) OnError

func (w *Workflow) OnError(f func(e error)) *Workflow

OnError executes a function if happened during creating a job session or opening a job session.

func (*Workflow) Run

func (w *Workflow) Run(cmd string, args ...string) *Job

Run submits the first task in the workflow and returns the Job object. Same as NewJob(w).Run().

func (*Workflow) RunT

func (w *Workflow) RunT(jt drmaa2interface.JobTemplate) *Job

RunT submits the first task in the workflow and returns the Job object. Same as NewJob(w).RunT().

func (*Workflow) SetLogger

func (w *Workflow) SetLogger(log log.Logger) *Workflow

SetLogger sets a new logger for the workflow. Note that nil loggers are not accepted.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL