prose

package module
Version: v2.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jun 16, 2020 License: MIT Imports: 21 Imported by: 20

README

prose Build Status Build status GoDoc Coverage Status Go Report Card Awesome

prose is a natural language processing library (English only, at the moment) in pure Go. It supports tokenization, segmentation, part-of-speech tagging, and named-entity extraction.

You can can find a more detailed summary on the library's performance here: Introducing prose v2.0.0: Bringing NLP to Go.

Installation

$ go get gopkg.in/jdkato/prose.v2

Usage

Contents
Overview
package main

import (
    "fmt"
    "log"

    "gopkg.in/jdkato/prose.v2"
)

func main() {
    // Create a new document with the default configuration:
    doc, err := prose.NewDocument("Go is an open-source programming language created at Google.")
    if err != nil {
        log.Fatal(err)
    }

    // Iterate over the doc's tokens:
    for _, tok := range doc.Tokens() {
        fmt.Println(tok.Text, tok.Tag, tok.Label)
        // Go NNP B-GPE
        // is VBZ O
        // an DT O
        // ...
    }

    // Iterate over the doc's named-entities:
    for _, ent := range doc.Entities() {
        fmt.Println(ent.Text, ent.Label)
        // Go GPE
        // Google GPE
    }

    // Iterate over the doc's sentences:
    for _, sent := range doc.Sentences() {
        fmt.Println(sent.Text)
        // Go is an open-source programming language created at Google.
    }
}

The document-creation process adheres to the following sequence of steps:

tokenization -> POS tagging -> NE extraction
            \
             segmenatation

Each step may be disabled (assuming later steps aren't required) by passing the appropriate functional option. To disable named-entity extraction, for example, you'd do the following:

doc, err := prose.NewDocument(
        "Go is an open-source programming language created at Google.",
        prose.WithExtraction(false))
Tokenizing

prose includes a tokenizer capable of hanlding modern text, including the non-word character spans shown below.

Type Example
Email addresses Jane.Doe@example.com
Hashtags #trending
Mentions @jdkato
URLs https://github.com/jdkato/prose
Emoticons :-), >:(, o_0, etc.
package main

import (
    "fmt"
    "log"

    "gopkg.in/jdkato/prose.v2"
)

func main() {
    // Create a new document with the default configuration:
    doc, err := prose.NewDocument("@jdkato, go to http://example.com thanks :).")
    if err != nil {
        log.Fatal(err)
    }

    // Iterate over the doc's tokens:
    for _, tok := range doc.Tokens() {
        fmt.Println(tok.Text, tok.Tag)
        // @jdkato NN
        // , ,
        // go VB
        // to TO
        // http://example.com NN
        // thanks NNS
        // :) SYM
        // . .
    }
}
Segmenting

prose includes one of the most accurate sentence segmenters available, according to the Golden Rules created by the developers of the pragmatic_segmenter.

Name Language License GRS (English) GRS (Other) Speed†
Pragmatic Segmenter Ruby MIT 98.08% (51/52) 100.00% 3.84 s
prose Go MIT 75.00% (39/52) N/A 0.96 s
TactfulTokenizer Ruby GNU GPLv3 65.38% (34/52) 48.57% 46.32 s
OpenNLP Java APLv2 59.62% (31/52) 45.71% 1.27 s
Standford CoreNLP Java GNU GPLv3 59.62% (31/52) 31.43% 0.92 s
Splitta Python APLv2 55.77% (29/52) 37.14% N/A
Punkt Python APLv2 46.15% (24/52) 48.57% 1.79 s
SRX English Ruby GNU GPLv3 30.77% (16/52) 28.57% 6.19 s
Scapel Ruby GNU GPLv3 28.85% (15/52) 20.00% 0.13 s

† The original tests were performed using a MacBook Pro 3.7 GHz Quad-Core Intel Xeon E5 running 10.9.5, while prose was timed using a MacBook Pro 2.9 GHz Intel Core i7 running 10.13.3.

package main

import (
    "fmt"
    "strings"

    "github.com/jdkato/prose"
)

func main() {
    // Create a new document with the default configuration:
    doc, _ := prose.NewDocument(strings.Join([]string{
        "I can see Mt. Fuji from here.",
        "St. Michael's Church is on 5th st. near the light."}, " "))

    // Iterate over the doc's sentences:
    sents := doc.Sentences()
    fmt.Println(len(sents)) // 2
    for _, sent := range sents {
        fmt.Println(sent.Text)
        // I can see Mt. Fuji from here.
        // St. Michael's Church is on 5th st. near the light.
    }
}
Tagging

prose includes a tagger based on Textblob's "fast and accurate" POS tagger. Below is a comparison of its performance against NLTK's implementation of the same tagger on the Treebank corpus:

Library Accuracy 5-Run Average (sec)
NLTK 0.893 7.224
prose 0.961 2.538

(See scripts/test_model.py for more information.)

The full list of supported POS tags is given below.

TAG DESCRIPTION
( left round bracket
) right round bracket
, comma
: colon
. period
'' closing quotation mark
`` opening quotation mark
# number sign
$ currency
CC conjunction, coordinating
CD cardinal number
DT determiner
EX existential there
FW foreign word
IN conjunction, subordinating or preposition
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
LS list item marker
MD verb, modal auxiliary
NN noun, singular or mass
NNP noun, proper singular
NNPS noun, proper plural
NNS noun, plural
PDT predeterminer
POS possessive ending
PRP pronoun, personal
PRP$ pronoun, possessive
RB adverb
RBR adverb, comparative
RBS adverb, superlative
RP adverb, particle
SYM symbol
TO infinitival to
UH interjection
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd person singular present
WDT wh-determiner
WP wh-pronoun, personal
WP$ wh-pronoun, possessive
WRB wh-adverb
NER

prose v2.0.0 includes a much improved version of v1.0.0's chunk package, which can identify people (PERSON) and geographical/political Entities (GPE) by default.

package main

import (
    "gopkg.in/jdkato/prose.v2"
)

func main() {
    doc, _ := prose.NewDocument("Lebron James plays basketbal in Los Angeles.")
    for _, ent := range doc.Entities() {
        fmt.Println(ent.Text, ent.Label)
        // Lebron James PERSON
        // Los Angeles GPE
    }
}

However, in an attempt to make this feature more useful, we've made it straightforward to train your own models for specific use cases. See Prodigy + prose: Radically efficient machine teaching in Go for a tutorial.

Documentation

Overview

Package prose is a repository of packages related to text processing, including tokenization, part-of-speech tagging, and named-entity extraction.

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

func Asset

func Asset(name string) ([]byte, error)

Asset loads and returns the asset for the given name. It returns an error if the asset could not be found or could not be loaded.

func AssetDir

func AssetDir(name string) ([]string, error)

AssetDir returns the file names below a certain directory embedded in the file by go-bindata. For example if you run go-bindata on data/... and data contains the following hierarchy:

data/
  foo.txt
  img/
    a.png
    b.png

then AssetDir("data") would return []string{"foo.txt", "img"} AssetDir("data/img") would return []string{"a.png", "b.png"} AssetDir("foo.txt") and AssetDir("notexist") would return an error AssetDir("") will return []string{"data"}.

func AssetInfo

func AssetInfo(name string) (os.FileInfo, error)

AssetInfo loads and returns the asset info for the given name. It returns an error if the asset could not be found or could not be loaded.

func AssetNames

func AssetNames() []string

AssetNames returns the names of the assets.

func MustAsset

func MustAsset(name string) []byte

MustAsset is like Asset but panics when Asset would return an error. It simplifies safe initialization of global variables.

func RestoreAsset

func RestoreAsset(dir, name string) error

RestoreAsset restores an asset under the given directory

func RestoreAssets

func RestoreAssets(dir, name string) error

RestoreAssets restores an asset under the given directory recursively

Types

type DataSource

type DataSource func(model *Model)

DataSource provides training data to a Model.

func UsingEntities

func UsingEntities(data []EntityContext) DataSource

UsingEntities creates a NER from labeled data.

type DocOpt

type DocOpt func(doc *Document, opts *DocOpts)

A DocOpt represents a setting that changes the document creation process.

For example, it might disable named-entity extraction:

doc := prose.NewDocument("...", prose.WithExtraction(false))

func UsingModel

func UsingModel(model *Model) DocOpt

UsingModel can enable (the default) or disable named-entity extraction.

func WithExtraction

func WithExtraction(include bool) DocOpt

WithExtraction can enable (the default) or disable named-entity extraction.

func WithSegmentation

func WithSegmentation(include bool) DocOpt

WithSegmentation can enable (the default) or disable sentence segmentation.

func WithTagging

func WithTagging(include bool) DocOpt

WithTagging can enable (the default) or disable POS tagging.

func WithTokenization

func WithTokenization(include bool) DocOpt

WithTokenization can enable (the default) or disable tokenization.

type DocOpts

type DocOpts struct {
	Extract  bool // If true, include named-entity extraction
	Segment  bool // If true, include segmentation
	Tag      bool // If true, include POS tagging
	Tokenize bool // If true, include tokenization
}

DocOpts controls the Document creation process:

type Document

type Document struct {
	Model *Model
	Text  string
	// contains filtered or unexported fields
}

A Document represents a parsed body of text.

func NewDocument

func NewDocument(text string, opts ...DocOpt) (*Document, error)

NewDocument creates a Document according to the user-specified options.

For example,

doc := prose.NewDocument("...")

func (*Document) Entities

func (doc *Document) Entities() []Entity

Entities returns `doc`'s entities.

func (*Document) Sentences

func (doc *Document) Sentences() []Sentence

Sentences returns `doc`'s sentences.

func (*Document) Tokens

func (doc *Document) Tokens() []Token

Tokens returns `doc`'s tokens.

type Entity

type Entity struct {
	Text  string // The entity's actual content.
	Label string // The entity's label.
}

An Entity represents an individual named-entity.

type EntityContext

type EntityContext struct {
	// Is this is a correct entity?
	//
	// Some annotation software, e.g. Prodigy, include entities "rejected" by
	// its user. This allows us to handle those cases.
	Accept bool

	Spans []LabeledEntity // The entity locations relative to `Text`.
	Text  string          // The sentence containing the entities.
}

EntityContext represents text containing named-entities.

type LabeledEntity

type LabeledEntity struct {
	Start int
	End   int
	Label string
}

LabeledEntity represents an externally-labeled named-entity.

type Model

type Model struct {
	Name string
	// contains filtered or unexported fields
}

A Model holds the structures and data used internally by prose.

func ModelFromData

func ModelFromData(name string, sources ...DataSource) *Model

ModelFromData creates a new Model from user-provided training data.

func ModelFromDisk

func ModelFromDisk(path string) *Model

ModelFromDisk loads a Model from the user-provided location.

func (*Model) Write

func (m *Model) Write(path string) error

Write saves a Model to the user-provided location.

type Sentence

type Sentence struct {
	Text string // The sentence's text.
}

A Sentence represents a segmented portion of text.

type Token

type Token struct {
	Tag   string // The token's part-of-speech tag.
	Text  string // The token's actual content.
	Label string // The token's IOB label.
}

A Token represents an individual token of text such as a word or punctuation symbol.

type TupleSlice

type TupleSlice [][][]string

TupleSlice is a slice of tuples in the form (words, tags).

func ReadTagged

func ReadTagged(text, sep string) TupleSlice

ReadTagged converts pre-tagged input into a TupleSlice suitable for training.

Example
tagged := "Pierre|NNP Vinken|NNP ,|, 61|CD years|NNS"
fmt.Println(ReadTagged(tagged, "|"))
Output:

[[[Pierre Vinken , 61 years] [NNP NNP , CD NNS]]]

func (TupleSlice) Len

func (t TupleSlice) Len() int

Len returns the length of a Tuple.

func (TupleSlice) Swap

func (t TupleSlice) Swap(i, j int)

Swap switches the ith and jth elements in a Tuple.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL