Documentation ¶
Overview ¶
是在未来将会废弃的基于天收益序列计算指标的模块,由于大量不恰当的使用了sliding window,导致性能不佳
Index ¶
- Variables
- func ActivePremium(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64) (float64, error)
- func AdjustedSharpeRatio(Ra *utils.SlidingWindow, Rf float64, scale float64) (float64, error)
- func Alpha(Ra, Rb, Rf *utils.SlidingWindow) (float64, error)
- func Alpha2(Ra, Rb *utils.SlidingWindow, Rf float64) (float64, error)
- func Annualized(returns *utils.SlidingWindow, scale float64, geometric bool) (float64, error)
- func AppraisalRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64, ...) (float64, error)
- func AverageDrawdown(Ra *utils.SlidingWindow) (float64, error)
- func AverageLength(Ra *utils.SlidingWindow) (float64, error)
- func AverageRecovery(Ra *utils.SlidingWindow) (float64, error)
- func BernardoLedoitRatio(Ra *utils.SlidingWindow) (float64, error)
- func Beta(Ra, Rb, Rf *utils.SlidingWindow) (float64, error)
- func Beta2(Ra, Rb *utils.SlidingWindow, Rf float64) (float64, error)
- func BurkeRatio(Ra *utils.SlidingWindow, Rf float64, scale float64) (float64, error)
- func CMLSlope(Rb *utils.SlidingWindow, Rf float64) (float64, error)
- func CMLSlope2(Rb *utils.SlidingWindow, Rf float64) (float64, error)
- func Calculate(prices *utils.SlidingWindow, method string) (*utils.SlidingWindow, error)
- func CalmarRatio(Ra *utils.SlidingWindow, scale float64) (float64, error)
- func Centered(returns *utils.SlidingWindow) (*utils.SlidingWindow, error)
- func Cumulative(returns *utils.SlidingWindow, geometric bool) (float64, error)
- func DRatio(Ra *utils.SlidingWindow) (float64, error)
- func DownsideDeviation(Ra *utils.SlidingWindow, MAR *utils.SlidingWindow) (float64, error)
- func DownsideDeviation2(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func DownsideFrequency(Ra *utils.SlidingWindow, MAR *utils.SlidingWindow) (float64, error)
- func DownsideFrequency2(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func Drawdowns(Rb *utils.SlidingWindow) ([]float64, error)
- func Epsilon(Ra, Rb, Rf *utils.SlidingWindow, scale float64) (float64, error)
- func Epsilon2(Ra, Rb *utils.SlidingWindow, Rf float64, scale float64) (float64, error)
- func Excess(returns, Rf *utils.SlidingWindow) (*utils.SlidingWindow, error)
- func Excess2(returns *utils.SlidingWindow, Rf float64) (*utils.SlidingWindow, error)
- func FamaBeta(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, Ra_sclae float64, ...) (float64, error)
- func FindDrawdowns(Ra *utils.SlidingWindow) map[string][]float64
- func InformationRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64) (float64, error)
- func JensenAlpha(Ra, Rb, Rf *utils.SlidingWindow, scale float64) (float64, error)
- func JensenAlpha2(Ra, Rb *utils.SlidingWindow, Rf float64, scale float64) (float64, error)
- func Kappa(Ra *utils.SlidingWindow, MAR float64, l float64) (float64, error)
- func KellyRatio_Full(Ra *utils.SlidingWindow, Rf float64) (float64, error)
- func KellyRatio_Half(Ra *utils.SlidingWindow, Rf float64) (float64, error)
- func Kurtosis(Ra *utils.SlidingWindow) (float64, error)
- func M2Sortino(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, MAR float64) (float64, error)
- func MSquared(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
- func MSquaredExcess(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64, ...) (float64, error)
- func MaxDrawdown(Ra *utils.SlidingWindow) (float64, error)
- func MeanAbsoluteDeviation(Ra *utils.SlidingWindow) (float64, error)
- func MeanGeometric(Ra *utils.SlidingWindow) (float64, error)
- func OmegaExcessReturn(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, MAR float64) (float64, error)
- func PainIndex(Ra *utils.SlidingWindow) (float64, error)
- func PainRatio(Ra *utils.SlidingWindow, Rf float64, scale float64) (float64, error)
- func ProspectRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func Relative(Ra, Rb *utils.SlidingWindow) (*utils.SlidingWindow, error)
- func Selectivity(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
- func SharpeRatio(Ra *utils.SlidingWindow, Rf_val float64, scale float64) (float64, error)
- func SharpeRatio_Annualized(Ra *utils.SlidingWindow, Rf float64, scale float64) (float64, error)
- func Skewness(Ra *utils.SlidingWindow) (float64, error)
- func SkewnessKurtosisRatio(Ra *utils.SlidingWindow) (float64, error)
- func SortinoRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func SpecificRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
- func StdDev(Ra *utils.SlidingWindow) (float64, error)
- func StdDev_Annualized(Ra *utils.SlidingWindow, scale float64) (float64, error)
- func SterlingRatio(Ra *utils.SlidingWindow, scale, excess float64) (float64, error)
- func SystematicRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
- func TotalRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
- func TrackingError(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64) (float64, error)
- func TreynorRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
- func UpDownRatios(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow) (float64, error)
- func UpsideFrequency(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func UpsidePotentialRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func UpsideRisk(Ra *utils.SlidingWindow, MAR float64, stat string) (float64, error)
- func Variance(Ra *utils.SlidingWindow) (float64, error)
- func VolatilitySkewness_Risk(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func VolatilitySkewness_Variance(Ra *utils.SlidingWindow, MAR float64) (float64, error)
- func Y2Scale(R float64, scale int, geometric bool) (float64, error)
- type Func1Sliding
- type Func1Sliding1F
- type Func1Sliding1F1B
- type Func1Sliding1F1S
- type Func1Sliding2F
- type Func2Sliding
- type Func2Sliding1F
- type Func2Sliding2F
- type Func2Sliding2F1S
- type P1S1F1BWrapper
- type P1S1F1SWrapper
- type P1S1FWrapper
- type P1S2FWrapper
- type P1SWrapper
- type P2S1FWrapper
- type P2S2F1SWrapper
- type P2S2FWrapper
- type P2SWrapper
- type Performance
Constants ¶
This section is empty.
Variables ¶
var PerformanceMap map[string]Performance
Functions ¶
func ActivePremium ¶
func ActivePremium(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64) (float64, error)
/ <summary> /Active Premium / The return on an investment's annualized return minus the benchmark's / annualized return. / Active Premium = Investment's annualized return - Benchmark's annualized / </summary>
func AdjustedSharpeRatio ¶
/ <summary> / Adjusted Sharpe ratio of the return distribution / Adjusted Sharpe ratio was introduced by Pezier and White (2006) to adjusts / for skewness and kurtosis by incorporating a penalty factor for negative skewness / and excess kurtosis. / </summary>
func Alpha ¶
func Alpha(Ra, Rb, Rf *utils.SlidingWindow) (float64, error)
/ <summary> / 阿尔法 / </summary> / <param name="Ra"></param> / <param name="Rb"></param> / <param name="Rf"></param> / <returns></returns>????
func Annualized ¶
/ <param name="returns"></param> / <param name="scale"></param> / <param name="geometric"></param> / <returns></returns>
func AppraisalRatio ¶
func AppraisalRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64, method string) (float64, error)
/ <summary> / Appraisal ratio is the Jensen's alpha adjusted for specific risk. The numerator / is divided by specific risk instead of total risk. / </summary>
func AverageDrawdown ¶
func AverageDrawdown(Ra *utils.SlidingWindow) (float64, error)
func AverageLength ¶
func AverageLength(Ra *utils.SlidingWindow) (float64, error)
func AverageRecovery ¶
func AverageRecovery(Ra *utils.SlidingWindow) (float64, error)
func BernardoLedoitRatio ¶
func BernardoLedoitRatio(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / BernardoLedoitRatio:take the sum of the subset of / returns that are above 0 and we divide it by the opposite of the sum of / the subset of returns that are below 0 / (正收益率汇总/负收益率汇总;粗略描述胜败比率的总体水平,但注意,负收益率的力量更大,不能满足于1) / </summary>
func BurkeRatio ¶
/ <summary> / To calculate Burke ratio we take the difference between the portfolio / return and the risk free rate and we divide it by the square root of the / sum of the square of the drawdowns. To calculate the modified Burke ratio / we just multiply the Burke ratio by the square root of the number of datas. / (一种调整收益率的计算方式,调整是通过drawdown的平方和进行的) / </summary>
func CMLSlope2 ¶
func CMLSlope2(Rb *utils.SlidingWindow, Rf float64) (float64, error)
/ <summary> / 斜率 / </summary> / <param name="Rb"></param> / <param name="Rf"></param> / <returns></returns>
func Calculate ¶
func Calculate(prices *utils.SlidingWindow, method string) (*utils.SlidingWindow, error)
/ <param name="prices"></param> / <param name="method"></param> / <returns></returns>
func CalmarRatio ¶
func CalmarRatio(Ra *utils.SlidingWindow, scale float64) (float64, error)
func Centered ¶
func Centered(returns *utils.SlidingWindow) (*utils.SlidingWindow, error)
/ <param name="returns"></param> / <returns></returns>
func Cumulative ¶
func Cumulative(returns *utils.SlidingWindow, geometric bool) (float64, error)
/ <param name="returns"></param> / <param name="geometric"></param> / <returns></returns>
func DRatio ¶
func DRatio(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / d ratio of the return distribution / The d ratio is similar to the Bernado Ledoit ratio but inverted and / taking into account the frequency of positive and negative returns. / </summary>
func DownsideDeviation ¶
func DownsideDeviation(Ra *utils.SlidingWindow, MAR *utils.SlidingWindow) (float64, error)
/ <summary> / downside risk (deviation, variance) of the return distribution / Downside deviation, semideviation, and semivariance are measures of downside / risk. / </summary> = "full" = false func DownsideDeviation(Ra *utils.SlidingWindow, MAR *utils.SlidingWindow, method string, potential bool) float64 {
func DownsideDeviation2 ¶
func DownsideDeviation2(Ra *utils.SlidingWindow, MAR float64) (float64, error)
= "full" = false
func DownsideFrequency ¶
func DownsideFrequency(Ra *utils.SlidingWindow, MAR *utils.SlidingWindow) (float64, error)
/ <summary> / downside frequency of the return distribution / To calculate Downside Frequency, we take the subset of returns that are / less than the target (or Minimum Acceptable Returns (MAR)) returns and / divide the length of this subset by the total number of returns. / </summary>
func DownsideFrequency2 ¶
func DownsideFrequency2(Ra *utils.SlidingWindow, MAR float64) (float64, error)
func Drawdowns ¶
func Drawdowns(Rb *utils.SlidingWindow) ([]float64, error)
/ <summary> / Calculate the drawdown levels in a timeseries / </summary> = true
func Epsilon ¶
func Epsilon(Ra, Rb, Rf *utils.SlidingWindow, scale float64) (float64, error)
/ <summary> / Epsilon / </summary>
func Excess ¶
func Excess(returns, Rf *utils.SlidingWindow) (*utils.SlidingWindow, error)
func Excess2 ¶
func Excess2(returns *utils.SlidingWindow, Rf float64) (*utils.SlidingWindow, error)
/ <param name="returns"></param> / <param name="Rf"></param> / <returns></returns>
func FamaBeta ¶
func FamaBeta(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, Ra_sclae float64, Rb_scale float64) (float64, error)
/ <summary> / Fama beta is a beta used to calculate the loss of diversification. It is made / so that the systematic risk is equivalent to the total portfolio risk. / </summary>
func FindDrawdowns ¶
func FindDrawdowns(Ra *utils.SlidingWindow) map[string][]float64
func InformationRatio ¶
func InformationRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64) (float64, error)
/ <summary> / InformationRatio:ActivePremium/TrackingError / (经TrackingError调整的超额收益率) / </summary>
func JensenAlpha ¶
func JensenAlpha(Ra, Rb, Rf *utils.SlidingWindow, scale float64) (float64, error)
func JensenAlpha2 ¶
func Kappa ¶
/ <summary> / Kappa is a generalized downside risk-adjusted performance measure. / To calculate it, we take the difference of the mean of the distribution / to the target and we divide it by the l-root of the lth lower partial / moment. To calculate the lth lower partial moment we take the subset of / returns below the target and we sum the differences of the target to / these returns. We then return return this sum divided by the length of / the whole distribution. / (非年化的超MAR平均收益率通过l阶根的低于MAR的收益率序列的l阶矩) / </summary>
func KellyRatio_Full ¶
func KellyRatio_Full(Ra *utils.SlidingWindow, Rf float64) (float64, error)
/ <summary> / the Kelly criterion is equal to the expected excess return of the strategy / divided by the expected variance of the excess return / (非年化的平均超额收益除以非年化的方差) / </summary>
func KellyRatio_Half ¶
func KellyRatio_Half(Ra *utils.SlidingWindow, Rf float64) (float64, error)
func Kurtosis ¶
func Kurtosis(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / 峰度 / </summary> = "sample"
func M2Sortino ¶
func M2Sortino(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, MAR float64) (float64, error)
/ <summary> / M squared for Sortino is a M^2 calculated for Downside risk instead of Total Risk / (基于SortinoRatio进行的收益率调整) / </summary>
func MSquared ¶
func MSquared(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
/ <summary> / M squared is a risk adjusted return useful to judge the size of relative / performance between differents portfolios. With it you can compare portfolios / with different levels of risk. / (使得不同组合的收益率可比的调整措施) / </summary>
func MSquaredExcess ¶
func MSquaredExcess(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64, method string) (float64, error)
/ <summary> / M squared excess is the quantity above the standard M. / There is a geometric excess return which is better for Bacon and an arithmetic excess return / (是与Rb的年化收益率进行的excess比较) / </summary>
func MaxDrawdown ¶
func MaxDrawdown(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / 最大回撤,默认为返回其相反数 / </summary>
func MeanAbsoluteDeviation ¶
func MeanAbsoluteDeviation(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / To calculate Mean absolute deviation we take / the sum of the absolute value of the difference between the returns and the mean of the returns / and we divide it by the number of returns. / (描述收益率偏离均值得一个指标) / </summary>
func MeanGeometric ¶
func MeanGeometric(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / 收益率序列的几何均值,非年化 / </summary>
func OmegaExcessReturn ¶
func OmegaExcessReturn(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, MAR float64) (float64, error)
/ <summary> / Omega excess return is another form of downside risk-adjusted return. It is / calculated by multiplying the downside variance of the style benchmark by 3 / times the style beta. / (经过Ra,Rb的DownsideDeviation调整后的年化收益率,严格意义并不十分明确) / </summary>
func ProspectRatio ¶
func ProspectRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error)
/ <summary> / Prospect ratio is a ratio used to penalise loss since most people feel loss / greater than gain / (经验类型调整收益率,给损失赋予更大的权重) / </summary>
func Relative ¶
func Relative(Ra, Rb *utils.SlidingWindow) (*utils.SlidingWindow, error)
/ <param name="Ra"></param> / <param name="Rb"></param> / <returns></returns>
func Selectivity ¶
func Selectivity(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
/ <summary> / Selectivity is the same as Jensen's alpha / </summary>
func SharpeRatio ¶
/ <summary> / calculate a traditional or modified Sharpe Ratio of Return over StdDev or / VaR or ES / / The Sharpe ratio is simply the return per unit of risk (represented by / variability). In the classic case, the unit of risk is the standard / deviation of the returns. / </summary>
func SharpeRatio_Annualized ¶
/ <summary> / calculate annualized Sharpe Ratio / The Sharpe Ratio is a risk-adjusted measure of return that uses standard / deviation to represent risk. / </summary>
func Skewness ¶
func Skewness(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / 偏度 / </summary> default = "moment"
func SkewnessKurtosisRatio ¶
func SkewnessKurtosisRatio(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / 偏度峰度比 / </summary>
func SortinoRatio ¶
func SortinoRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error)
/ <summary> / Sortino proposed an improvement on the Sharpe Ratio to better account for / skill and excess performance by using only downside semivariance as the / measure of risk.Sortino contends that risk should be measured in terms of not meeting the / investment goal. / (引入MAR,并开始在调整收益率的分子分母进行Excess return与DownsideDeviation的MAR调整) / </summary>
func SpecificRisk ¶
func SpecificRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
/ <summary> / epsilon与R中不同,但似乎没有影响 / Specific risk is the standard deviation of the error term in the / regression equation. / </summary>
func StdDev_Annualized ¶
func StdDev_Annualized(Ra *utils.SlidingWindow, scale float64) (float64, error)
/ <summary> / 年化标准差 / </summary>
func SterlingRatio ¶
func SterlingRatio(Ra *utils.SlidingWindow, scale, excess float64) (float64, error)
func SystematicRisk ¶
func SystematicRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
/ <summary> / Systematic risk as defined by Bacon(2008) is the product of beta by market / risk. Be careful ! It's not the same definition as the one given by Michael / Jensen. Market risk is the standard deviation of the benchmark. The systematic / risk is annualized / </summary>
func TotalRisk ¶
func TotalRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
/ <summary> / The square of total risk is the sum of the square of systematic risk and the square / of specific risk. Specific risk is the standard deviation of the error term in the / regression equation. Both terms are annualized to calculate total risk. / (总风险,注意这是一个经过开方之后的数值:SystematicRisk+SpecificRisk) / </summary>
func TrackingError ¶
func TrackingError(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64) (float64, error)
/ <summary> / A measure of the unexplained portion of performance relative to a benchmark. / (年化的超指数收益率序列标准差) / </summary>
func TreynorRatio ¶
func TreynorRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error)
/ <summary> / The Treynor ratio is similar to the Sharpe Ratio, except it uses beta as the / volatility measure (to divide the investment's excess return over the beta). / (组合诸多的风险调整收益率之一) / </summary>
func UpDownRatios ¶
func UpDownRatios(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow) (float64, error)
/ <summary> / 只测试了默认参数 / Calculate metrics on how the asset in R performed in up and down markets, / measured by periods when the benchmark asset was up or down. / Up (Down) Capture Ratio: this is a measure of an investment's compound / return when the benchmark was up (down) divided by the benchmark's compound / return when the benchmark was up (down). The greater (lower) the value, the / better.(Up越大越好,Down越小越好) / / Up (Down) Number Ratio: similarly, this is a measure of the number of / periods that the investment was up (down) when the benchmark was up (down), / divided by the number of periods that the Benchmark was up (down).(Up越大越好,Down越小越好) / / Up (Down) Percentage Ratio: this is a measure of the number of periods that / the investment outperformed the benchmark when the benchmark was up (down), / divided by the number of periods that the benchmark was up (down). Unlike / the prior two metrics, in both cases a higher value is better.(Up、Down均为越大越好) / (当市场涨跌时,组合收益率涨跌所占比率,) / </summary>
func UpsideFrequency ¶
func UpsideFrequency(Ra *utils.SlidingWindow, MAR float64) (float64, error)
/ <summary> / subset of returns that are / more than the target (or Minimum Acceptable Returns (MAR)) returns and / divide the length of this subset by the total number of returns. / (超过MAR的频率) / </summary>
func UpsidePotentialRatio ¶
func UpsidePotentialRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error)
/ <summary> / Upside Potential Ratio,compared to Sortino, was a further improvement, extending the / measurement of only upside on the numerator, and only downside of the / denominator of the ratio equation. / (分子只考虑超过MAR部分,分母只考虑DownsideDeviation的下跌风险) / </summary>
func UpsideRisk ¶
/ <summary> / Upside Risk is the similar of semideviation taking the return above the / Minimum Acceptable Return instead of using the mean return or zero. / (一般来说,非对称类的比较,单求此统计量意义有限) / </summary>
func Variance ¶
func Variance(Ra *utils.SlidingWindow) (float64, error)
/ <summary> / 方差 / </summary>
func VolatilitySkewness_Risk ¶
func VolatilitySkewness_Risk(Ra *utils.SlidingWindow, MAR float64) (float64, error)
func VolatilitySkewness_Variance ¶
func VolatilitySkewness_Variance(Ra *utils.SlidingWindow, MAR float64) (float64, error)
/ <summary> / Volatility skewness is a similar measure to omega but using the second / partial moment. It's the ratio of the upside variance compared to the / downside variance. Variability skewness is the ratio of the upside risk / compared to the downside risk. / (评价收益率分布的偏度,应该是越大越好,与1的关系要看UpsideRisk与DownsideDeviation定义是否一致) / </summary>
Types ¶
type Func1Sliding ¶
type Func1Sliding func(Ra *utils.SlidingWindow) (float64, error)
type Func1Sliding1F ¶
type Func1Sliding1F func(Ra *utils.SlidingWindow, param float64) (float64, error)
type Func1Sliding1F1B ¶
type Func1Sliding1F1S ¶
type Func1Sliding2F ¶
type Func2Sliding ¶
type Func2Sliding func(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow) (float64, error)
type Func2Sliding1F ¶
type Func2Sliding1F func(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, param float64) (float64, error)
type Func2Sliding2F ¶
type Func2Sliding2F func(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, param1 float64, param2 float64) (float64, error)
type Func2Sliding2F1S ¶
type Func2Sliding2F1S func(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, param1 float64, param2 float64, str string) (float64, error)
type P1S1F1BWrapper ¶
type P1S1F1BWrapper struct {
// contains filtered or unexported fields
}
type P1S1F1SWrapper ¶
type P1S1F1SWrapper struct {
// contains filtered or unexported fields
}
type P1S1FWrapper ¶
type P1S1FWrapper struct {
// contains filtered or unexported fields
}
type P1S2FWrapper ¶
type P1S2FWrapper struct {
// contains filtered or unexported fields
}
type P1SWrapper ¶
type P1SWrapper struct {
// contains filtered or unexported fields
}
type P2S1FWrapper ¶
type P2S1FWrapper struct {
// contains filtered or unexported fields
}
type P2S2F1SWrapper ¶
type P2S2F1SWrapper struct {
// contains filtered or unexported fields
}
type P2S2FWrapper ¶
type P2S2FWrapper struct {
// contains filtered or unexported fields
}
type P2SWrapper ¶
type P2SWrapper struct {
// contains filtered or unexported fields
}