goanneal

package module
Version: v0.0.0-...-f40f182 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 10, 2017 License: MIT Imports: 5 Imported by: 0

README

goanneal

Build Status MIT License

Work in progress.

Introduction

goanneal is a Go package for Simulated Annealing Optimization.

This package is totally inspired by a python module, simanneal.

Usage

  1. Create a problem which you want to solve by implementing State interface.

    type State interface {
        Copy() interface{} // Returns an address of an exact copy of the current state
        Move()             // Move to a different state
        Energy() float64   // Return the energy of the current state
    }
    

    In general, Egergy() represents an objective function to minimize.

  2. Get a new Annealer object by calling NewAnnealer(State).

  3. Annealer's fields, which are annealing parameters, can be changed.

  4. Execute annealing by calling Annealer.Anneal().

Then you'll get an approximate solution.

Example: Travelling Salesman Problem (TSP)

The quintessential discrete optimization problem is the travelling salesman problem.

Please refer to examples/salesman to see full code.

0. Install
go get github.com/matsulib/goanneal
1. Implement State interface as TravelState
import (
    "math/rand"

    "github.com/matsulib/goanneal"
)

var distanceMatrix map[string]DMap

type TravelState struct {
    state []string
}

// Returns an address of an exact copy of the receiver's state
func (self *TravelState) Copy() interface{} {
    copiedState := make([]string, len(self.state))
    copy(copiedState, self.state)
    return &TravelState{state: copiedState}
}

// Swaps two cities in the route.
func (self *TravelState) Move() {
    a := rand.Intn(len(self.state))
    b := rand.Intn(len(self.state))
    self.state[a], self.state[b] = self.state[b], self.state[a]
}

// Calculates the length of the route.
func (self *TravelState) Energy() float64 {
    e := 0.0
    for i := 0; i < len(self.state); i++ {
        if i == 0 {
            e += distanceMatrix[self.state[len(self.state)-1]][self.state[0]]
        } else {
            e += distanceMatrix[self.state[i-1]][self.state[i]]
        }
    }
    return e
}
2. Get a new Annealer object
    initialState := &TravelState{state: problem.CitiesKeys()}

    tsp := goanneal.NewAnnealer(initialState)
3. Change a parameter of the number of iterations.
    tsp.Steps = 100000
4. Execute annealing
    state, energy := tsp.Anneal()
5. Output
    ts := state.(*TravelState)

    fmt.Println(int(energy), "mile route:")
    for i := 0; i < len(ts.state); i++ {
        fmt.Println("\t", ts.state[i])
    }

The output is as follows:

 Temperature        Energy    Accept   Improve     Elapsed   Remaining
     2.50000       6845.62     6.40%     0.00%     0:00:00     0:00:00
6845 mile route:
	 New York City
	 Philadelphia
	 Baltimore
	 Charlotte
	 Jacksonville
	 Houston
	 Austin
	 San Antonio
	 Phoenix
	 San Diego
	 Los Angeles
	 San Jose
	 San Francisco
	 Fort Worth
	 Dallas
	 Memphis
	 Indianapolis
	 Chicago
	 Detroit
	 Columbus

Annealing parameters

Getting the annealing algorithm to work effectively and quickly is a matter of tuning parameters. The defaults are:

Tmax = 25000.0  # Max (starting) temperature
Tmin = 2.5      # Min (ending) temperature
Steps = 50000   # Number of iterations
Updates = 100   # Number of updates (by default an update prints to stdout)

These can vary greatly depending on your objective function and solution space.

See: simanneal

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type Annealer

type Annealer struct {
	// parameters
	Tmax    float64 // max temperature
	Tmin    float64 // minimum temperature
	Steps   int
	Updates int

	// user settings
	CopyStrategy string
	UserExit     bool

	// placeholders
	State State
	// contains filtered or unexported fields
}

Annealer performs simulated annealing by calling functions to calculate energy and make moves on a state. The temperature schedule for annealing may be provided manually or estimated automatically.

func NewAnnealer

func NewAnnealer(initialState State) *Annealer

NewAnnealer initializes an Annealer struct

func (*Annealer) Anneal

func (a *Annealer) Anneal() (interface{}, float64)

Anneal minimizes the energy of a system by simulated annealing. Parameters state : an initial arrangement of the system Returns (state, energy): the best state and energy found.

func (*Annealer) Auto

func (a *Annealer) Auto(minutes float64, steps int) map[string]float64

Auto explores the annealing landscape and estimates optimal temperature settings. Returns a dictionary suitable for the `set_schedule` method.

func (*Annealer) SetSchedule

func (a *Annealer) SetSchedule(schedule map[string]float64)

SetSchedule takes the output from `auto` and sets the attributes

type State

type State interface {
	Copy() interface{} // Returns an address of an exact copy of the current state
	Move()             // Move to a different state
	Energy() float64   // Return the energy of the current state
}

State is an interface of a state of a problem. These three methods will handle the state.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
t or T : Toggle theme light dark auto
y or Y : Canonical URL