Documentation
¶
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type DiscreteModel ¶
type DiscreteModel interface { // Model is a model of a dynamical system Model // SystemMatrix returns state propagation matrix SystemMatrix() (A mat.Matrix) // ControlMatrix returns state propagation control matrix ControlMatrix() (B mat.Matrix) // OutputMatrix returns observation matrix OutputMatrix() (C mat.Matrix) // FeedForwardMatrix returns observation control matrix FeedForwardMatrix() (D mat.Matrix) }
DiscreteModel is a dynamical system whose state is driven by static propagation and observation dynamics matrices
type Estimate ¶
type Estimate interface { // Val returns estimate value Val() mat.Vector // Cov returns estimate covariance Cov() mat.Symmetric }
Estimate is dynamical system filter estimate
type Filter ¶
type Filter interface { // Predict returns a prediction of which will be // next internal state Predict(x, u mat.Vector) (Estimate, error) // Update returns estimated system state based on external measurement ym. Update(x, u, ym mat.Vector) (Estimate, error) }
Filter is a dynamical system filter.
type InitCond ¶
type InitCond interface { // State returns initial filter state State() mat.Vector // Cov returns initial state covariance Cov() mat.Symmetric }
InitCond is initial state condition of the filter
type Model ¶
type Model interface { // Propagator is system propagator Propagator // Observer is system observer Observer // SystemDims returns the dimension of state vector, input vector, // output (measurements, written as y) vector and disturbance vector (only dynamical systems). // Below are dimension of matrices as returned by SystemDims() (row,column) // nx, nx = A.SystemDims() // nx, nu = B.SystemDims() // ny, nx = C.SystemDims() // ny, nu = D.SystemDims() // nx, nz = E.SystemDims() SystemDims() (nx, nu, ny, nz int) }
Model is a model of a dynamical system
type Noise ¶
type Noise interface { // Mean returns noise mean Mean() []float64 // Cov returns covariance matrix of the noise Cov() mat.Symmetric // Sample returns a sample of the noise Sample() mat.Vector // Reset resets the noise Reset() }
Noise is dynamical system noise
type Observer ¶
type Observer interface { // Observe observes external state of the system. // Result for a linear system would be y=C*x+D*u+wn (last term is measurement noise) Observe(x, u, wn mat.Vector) (y mat.Vector, err error) }
Observer observes external state (output) of the system
type Propagator ¶
type Propagator interface { // Propagate propagates internal state of the system to the next step. // x is starting state, u is input vector, and z is disturbance input Propagate(x, u, z mat.Vector) (mat.Vector, error) }
Propagator propagates internal state of the system to the next step