Documentation ¶
Overview ¶
Package op defines functions for adding TensorFlow operations to a Graph.
Functions for adding an operation to a graph take a Scope object as the first argument. The Scope object encapsulates a graph and a set of properties (such as a name prefix) for all operations being added to the graph.
WARNING: The API in this package has not been finalized and can change without notice.
Example ¶
// This example creates a Graph that multiplies a constant matrix with // a matrix to be provided during graph execution (via // tensorflow.Session). s := NewScope() input := Placeholder(s, tf.Float) // Matrix to be provided to Session.Run output := MatMul(s, Const(s, [][]float32{{10}, {20}}), // Constant 2x1 matrix input, MatMulTransposeB(true)) if s.Err() != nil { panic(s.Err()) } // Shape of the product: The number of rows is fixed by m1, but the // number of columns will depend on m2, which is unknown. fmt.Println(output.Shape())
Output: [2, ?]
Index ¶
- func Abort(scope *Scope, optional ...AbortAttr) (o *tf.Operation)
- func Abs(scope *Scope, x tf.Output) (y tf.Output)
- func AccumulateNV2(scope *Scope, inputs []tf.Output, shape tf.Shape) (sum tf.Output)
- func Acos(scope *Scope, x tf.Output) (y tf.Output)
- func Acosh(scope *Scope, x tf.Output) (y tf.Output)
- func Add(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func AddManySparseToTensorsMap(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, ...) (sparse_handles tf.Output)
- func AddN(scope *Scope, inputs []tf.Output) (sum tf.Output)
- func AddSparseToTensorsMap(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, ...) (sparse_handle tf.Output)
- func AddV2(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func AdjustContrast(scope *Scope, images tf.Output, contrast_factor tf.Output, min_value tf.Output, ...) (output tf.Output)
- func AdjustContrastv2(scope *Scope, images tf.Output, contrast_factor tf.Output) (output tf.Output)
- func AdjustHue(scope *Scope, images tf.Output, delta tf.Output) (output tf.Output)
- func AdjustSaturation(scope *Scope, images tf.Output, scale tf.Output) (output tf.Output)
- func All(scope *Scope, input tf.Output, axis tf.Output, optional ...AllAttr) (output tf.Output)
- func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, ...) (sampled_candidates tf.Output, true_expected_count tf.Output, ...)
- func AllToAll(scope *Scope, input tf.Output, group_assignment tf.Output, ...) (output tf.Output)
- func Angle(scope *Scope, input tf.Output, optional ...AngleAttr) (output tf.Output)
- func AnonymousHashTable(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType) (table_handle tf.Output)
- func AnonymousIterator(scope *Scope, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output)
- func AnonymousIteratorV2(scope *Scope, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output, deleter tf.Output)
- func AnonymousIteratorV3(scope *Scope, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output)
- func AnonymousMultiDeviceIterator(scope *Scope, devices []string, output_types []tf.DataType, ...) (handle tf.Output, deleter tf.Output)
- func AnonymousMultiDeviceIteratorV3(scope *Scope, devices []string, output_types []tf.DataType, ...) (handle tf.Output)
- func AnonymousMutableDenseHashTable(scope *Scope, empty_key tf.Output, deleted_key tf.Output, ...) (table_handle tf.Output)
- func AnonymousMutableHashTable(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType) (table_handle tf.Output)
- func AnonymousMutableHashTableOfTensors(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, ...) (table_handle tf.Output)
- func Any(scope *Scope, input tf.Output, axis tf.Output, optional ...AnyAttr) (output tf.Output)
- func ApproxTopK(scope *Scope, input tf.Output, k int64, optional ...ApproxTopKAttr) (values tf.Output, indices tf.Output)
- func ApproximateEqual(scope *Scope, x tf.Output, y tf.Output, optional ...ApproximateEqualAttr) (z tf.Output)
- func ArgMax(scope *Scope, input tf.Output, dimension tf.Output, optional ...ArgMaxAttr) (output tf.Output)
- func ArgMin(scope *Scope, input tf.Output, dimension tf.Output, optional ...ArgMinAttr) (output tf.Output)
- func AsString(scope *Scope, input tf.Output, optional ...AsStringAttr) (output tf.Output)
- func Asin(scope *Scope, x tf.Output) (y tf.Output)
- func Asinh(scope *Scope, x tf.Output) (y tf.Output)
- func Assert(scope *Scope, condition tf.Output, data []tf.Output, optional ...AssertAttr) (o *tf.Operation)
- func AssertNextDataset(scope *Scope, input_dataset tf.Output, transformations tf.Output, ...) (handle tf.Output)
- func AssertPrevDataset(scope *Scope, input_dataset tf.Output, transformations tf.Output, ...) (handle tf.Output)
- func AssignAddVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation)
- func AssignSubVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation)
- func AssignVariableOp(scope *Scope, resource tf.Output, value tf.Output, ...) (o *tf.Operation)
- func AssignVariableXlaConcatND(scope *Scope, resource tf.Output, inputs []tf.Output, num_concats []int64, ...) (o *tf.Operation)
- func Atan(scope *Scope, x tf.Output) (y tf.Output)
- func Atan2(scope *Scope, y tf.Output, x tf.Output) (z tf.Output)
- func Atanh(scope *Scope, x tf.Output) (y tf.Output)
- func AudioSpectrogram(scope *Scope, input tf.Output, window_size int64, stride int64, ...) (spectrogram tf.Output)
- func AudioSummary(scope *Scope, tag tf.Output, tensor tf.Output, sample_rate float32, ...) (summary tf.Output)
- func AudioSummaryV2(scope *Scope, tag tf.Output, tensor tf.Output, sample_rate tf.Output, ...) (summary tf.Output)
- func AutoShardDataset(scope *Scope, input_dataset tf.Output, num_workers tf.Output, index tf.Output, ...) (handle tf.Output)
- func AvgPool(scope *Scope, value tf.Output, ksize []int64, strides []int64, padding string, ...) (output tf.Output)
- func AvgPool3D(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, ...) (output tf.Output)
- func AvgPool3DGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksize []int64, ...) (output tf.Output)
- func AvgPoolGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksize []int64, ...) (output tf.Output)
- func Batch(scope *Scope, in_tensors []tf.Output, num_batch_threads int64, ...) (batched_tensors []tf.Output, batch_index tf.Output, id tf.Output)
- func BatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, ...) (handle tf.Output)
- func BatchDatasetV2(scope *Scope, input_dataset tf.Output, batch_size tf.Output, ...) (handle tf.Output)
- func BatchMatMul(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatMulAttr) (output tf.Output)
- func BatchMatMulV2(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatMulV2Attr) (output tf.Output)
- func BatchMatMulV3(scope *Scope, x tf.Output, y tf.Output, Tout tf.DataType, ...) (output tf.Output)
- func BatchNormWithGlobalNormalization(scope *Scope, t tf.Output, m tf.Output, v tf.Output, beta tf.Output, ...) (result tf.Output)
- func BatchNormWithGlobalNormalizationGrad(scope *Scope, t tf.Output, m tf.Output, v tf.Output, gamma tf.Output, ...) (dx tf.Output, dm tf.Output, dv tf.Output, db tf.Output, dg tf.Output)
- func BatchToSpace(scope *Scope, input tf.Output, crops tf.Output, block_size int64) (output tf.Output)
- func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops tf.Output) (output tf.Output)
- func Betainc(scope *Scope, a tf.Output, b tf.Output, x tf.Output) (z tf.Output)
- func BiasAdd(scope *Scope, value tf.Output, bias tf.Output, optional ...BiasAddAttr) (output tf.Output)
- func BiasAddGrad(scope *Scope, out_backprop tf.Output, optional ...BiasAddGradAttr) (output tf.Output)
- func BiasAddV1(scope *Scope, value tf.Output, bias tf.Output) (output tf.Output)
- func Bincount(scope *Scope, arr tf.Output, size tf.Output, weights tf.Output) (bins tf.Output)
- func Bitcast(scope *Scope, input tf.Output, type_ tf.DataType) (output tf.Output)
- func BitwiseAnd(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func BitwiseOr(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func BitwiseXor(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func BlockLSTM(scope *Scope, seq_len_max tf.Output, x tf.Output, cs_prev tf.Output, ...) (i tf.Output, cs tf.Output, f tf.Output, o tf.Output, ci tf.Output, ...)
- func BlockLSTMGrad(scope *Scope, seq_len_max tf.Output, x tf.Output, cs_prev tf.Output, ...) (x_grad tf.Output, cs_prev_grad tf.Output, h_prev_grad tf.Output, ...)
- func BlockLSTMGradV2(scope *Scope, seq_len_max tf.Output, x tf.Output, cs_prev tf.Output, ...) (x_grad tf.Output, cs_prev_grad tf.Output, h_prev_grad tf.Output, ...)
- func BlockLSTMV2(scope *Scope, seq_len_max tf.Output, x tf.Output, cs_prev tf.Output, ...) (i tf.Output, cs tf.Output, f tf.Output, o tf.Output, ci tf.Output, ...)
- func BoostedTreesAggregateStats(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.Output, ...) (stats_summary tf.Output)
- func BoostedTreesBucketize(scope *Scope, float_values []tf.Output, bucket_boundaries []tf.Output) (buckets []tf.Output)
- func BoostedTreesCalculateBestFeatureSplit(scope *Scope, node_id_range tf.Output, stats_summary tf.Output, l1 tf.Output, ...) (node_ids tf.Output, gains tf.Output, feature_dimensions tf.Output, ...)
- func BoostedTreesCalculateBestFeatureSplitV2(scope *Scope, node_id_range tf.Output, stats_summaries_list []tf.Output, ...) (node_ids tf.Output, gains tf.Output, feature_ids tf.Output, ...)
- func BoostedTreesCalculateBestGainsPerFeature(scope *Scope, node_id_range tf.Output, stats_summary_list []tf.Output, ...) (node_ids_list []tf.Output, gains_list []tf.Output, thresholds_list []tf.Output, ...)
- func BoostedTreesCenterBias(scope *Scope, tree_ensemble_handle tf.Output, mean_gradients tf.Output, ...) (continue_centering tf.Output)
- func BoostedTreesCreateEnsemble(scope *Scope, tree_ensemble_handle tf.Output, stamp_token tf.Output, ...) (o *tf.Operation)
- func BoostedTreesCreateQuantileStreamResource(scope *Scope, quantile_stream_resource_handle tf.Output, epsilon tf.Output, ...) (o *tf.Operation)
- func BoostedTreesDeserializeEnsemble(scope *Scope, tree_ensemble_handle tf.Output, stamp_token tf.Output, ...) (o *tf.Operation)
- func BoostedTreesEnsembleResourceHandleOp(scope *Scope, optional ...BoostedTreesEnsembleResourceHandleOpAttr) (resource tf.Output)
- func BoostedTreesExampleDebugOutputs(scope *Scope, tree_ensemble_handle tf.Output, bucketized_features []tf.Output, ...) (examples_debug_outputs_serialized tf.Output)
- func BoostedTreesFlushQuantileSummaries(scope *Scope, quantile_stream_resource_handle tf.Output, num_features int64) (summaries []tf.Output)
- func BoostedTreesGetEnsembleStates(scope *Scope, tree_ensemble_handle tf.Output) (stamp_token tf.Output, num_trees tf.Output, num_finalized_trees tf.Output, ...)
- func BoostedTreesMakeQuantileSummaries(scope *Scope, float_values []tf.Output, example_weights tf.Output, ...) (summaries []tf.Output)
- func BoostedTreesMakeStatsSummary(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.Output, ...) (stats_summary tf.Output)
- func BoostedTreesPredict(scope *Scope, tree_ensemble_handle tf.Output, bucketized_features []tf.Output, ...) (logits tf.Output)
- func BoostedTreesQuantileStreamResourceAddSummaries(scope *Scope, quantile_stream_resource_handle tf.Output, summaries []tf.Output) (o *tf.Operation)
- func BoostedTreesQuantileStreamResourceDeserialize(scope *Scope, quantile_stream_resource_handle tf.Output, ...) (o *tf.Operation)
- func BoostedTreesQuantileStreamResourceFlush(scope *Scope, quantile_stream_resource_handle tf.Output, num_buckets tf.Output, ...) (o *tf.Operation)
- func BoostedTreesQuantileStreamResourceGetBucketBoundaries(scope *Scope, quantile_stream_resource_handle tf.Output, num_features int64) (bucket_boundaries []tf.Output)
- func BoostedTreesQuantileStreamResourceHandleOp(scope *Scope, optional ...BoostedTreesQuantileStreamResourceHandleOpAttr) (resource tf.Output)
- func BoostedTreesSerializeEnsemble(scope *Scope, tree_ensemble_handle tf.Output) (stamp_token tf.Output, tree_ensemble_serialized tf.Output)
- func BoostedTreesSparseAggregateStats(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.Output, ...) (stats_summary_indices tf.Output, stats_summary_values tf.Output, ...)
- func BoostedTreesSparseCalculateBestFeatureSplit(scope *Scope, node_id_range tf.Output, stats_summary_indices tf.Output, ...) (node_ids tf.Output, gains tf.Output, feature_dimensions tf.Output, ...)
- func BoostedTreesTrainingPredict(scope *Scope, tree_ensemble_handle tf.Output, cached_tree_ids tf.Output, ...) (partial_logits tf.Output, tree_ids tf.Output, node_ids tf.Output)
- func BoostedTreesUpdateEnsemble(scope *Scope, tree_ensemble_handle tf.Output, feature_ids tf.Output, ...) (o *tf.Operation)
- func BoostedTreesUpdateEnsembleV2(scope *Scope, tree_ensemble_handle tf.Output, feature_ids []tf.Output, ...) (o *tf.Operation)
- func BroadcastArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output)
- func BroadcastGradientArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output, r1 tf.Output)
- func BroadcastTo(scope *Scope, input tf.Output, shape tf.Output) (output tf.Output)
- func Bucketize(scope *Scope, input tf.Output, boundaries []float32) (output tf.Output)
- func BytesProducedStatsDataset(scope *Scope, input_dataset tf.Output, tag tf.Output, ...) (handle tf.Output)
- func CSRSparseMatrixComponents(scope *Scope, csr_sparse_matrix tf.Output, index tf.Output, type_ tf.DataType) (row_ptrs tf.Output, col_inds tf.Output, values tf.Output)
- func CSRSparseMatrixToDense(scope *Scope, sparse_input tf.Output, type_ tf.DataType) (dense_output tf.Output)
- func CSRSparseMatrixToSparseTensor(scope *Scope, sparse_matrix tf.Output, type_ tf.DataType) (indices tf.Output, values tf.Output, dense_shape tf.Output)
- func CTCBeamSearchDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, beam_width int64, ...) (decoded_indices []tf.Output, decoded_values []tf.Output, ...)
- func CTCGreedyDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, ...) (decoded_indices tf.Output, decoded_values tf.Output, decoded_shape tf.Output, ...)
- func CTCLoss(scope *Scope, inputs tf.Output, labels_indices tf.Output, ...) (loss tf.Output, gradient tf.Output)
- func CTCLossV2(scope *Scope, inputs tf.Output, labels_indices tf.Output, ...) (loss tf.Output, gradient tf.Output)
- func CacheDataset(scope *Scope, input_dataset tf.Output, filename tf.Output, ...) (handle tf.Output)
- func Cast(scope *Scope, x tf.Output, DstT tf.DataType, optional ...CastAttr) (y tf.Output)
- func Ceil(scope *Scope, x tf.Output) (y tf.Output)
- func CheckNumerics(scope *Scope, tensor tf.Output, message string) (output tf.Output)
- func CheckNumericsV2(scope *Scope, tensor tf.Output, message string) (output tf.Output)
- func Cholesky(scope *Scope, input tf.Output) (output tf.Output)
- func CholeskyGrad(scope *Scope, l tf.Output, grad tf.Output) (output tf.Output)
- func ClipByValue(scope *Scope, t tf.Output, clip_value_min tf.Output, clip_value_max tf.Output) (output tf.Output)
- func CollateTPUEmbeddingMemory(scope *Scope, memory_configs []tf.Output) (merged_memory_config tf.Output)
- func CollectiveAllToAllV2(scope *Scope, input tf.Output, group_size tf.Output, group_key tf.Output, ...) (data tf.Output)
- func CollectiveAllToAllV3(scope *Scope, input tf.Output, communicator tf.Output, ...) (data tf.Output)
- func CollectiveAssignGroupV2(scope *Scope, group_assignment tf.Output, device_index tf.Output, ...) (group_size tf.Output, group_key tf.Output)
- func CollectiveBcastRecv(scope *Scope, T tf.DataType, group_size int64, group_key int64, ...) (data tf.Output)
- func CollectiveBcastRecvV2(scope *Scope, group_size tf.Output, group_key tf.Output, ...) (data tf.Output)
- func CollectiveBcastSend(scope *Scope, input tf.Output, group_size int64, group_key int64, ...) (data tf.Output)
- func CollectiveBcastSendV2(scope *Scope, input tf.Output, group_size tf.Output, group_key tf.Output, ...) (data tf.Output)
- func CollectiveGather(scope *Scope, input tf.Output, group_size int64, group_key int64, ...) (data tf.Output)
- func CollectiveGatherV2(scope *Scope, input tf.Output, group_size tf.Output, group_key tf.Output, ...) (data tf.Output)
- func CollectiveInitializeCommunicator(scope *Scope, group_key tf.Output, rank tf.Output, group_size tf.Output, ...) (communicator tf.Output)
- func CollectivePermute(scope *Scope, input tf.Output, source_target_pairs tf.Output) (output tf.Output)
- func CollectiveReduce(scope *Scope, input tf.Output, group_size int64, group_key int64, ...) (data tf.Output)
- func CollectiveReduceScatterV2(scope *Scope, input tf.Output, group_size tf.Output, group_key tf.Output, ...) (data tf.Output)
- func CollectiveReduceV2(scope *Scope, input tf.Output, group_size tf.Output, group_key tf.Output, ...) (data tf.Output)
- func CollectiveReduceV3(scope *Scope, input tf.Output, communicator tf.Output, ...) (data tf.Output)
- func CombinedNonMaxSuppression(scope *Scope, boxes tf.Output, scores tf.Output, ...) (nmsed_boxes tf.Output, nmsed_scores tf.Output, nmsed_classes tf.Output, ...)
- func Complex(scope *Scope, real tf.Output, imag tf.Output, optional ...ComplexAttr) (out tf.Output)
- func ComplexAbs(scope *Scope, x tf.Output, optional ...ComplexAbsAttr) (y tf.Output)
- func CompositeTensorVariantFromComponents(scope *Scope, components []tf.Output, metadata string) (encoded tf.Output)
- func CompositeTensorVariantToComponents(scope *Scope, encoded tf.Output, metadata string, Tcomponents []tf.DataType) (components []tf.Output)
- func CompressElement(scope *Scope, components []tf.Output) (compressed tf.Output)
- func ComputeAccidentalHits(scope *Scope, true_classes tf.Output, sampled_candidates tf.Output, ...) (indices tf.Output, ids tf.Output, weights tf.Output)
- func ComputeBatchSize(scope *Scope, input_dataset tf.Output) (batch_size tf.Output)
- func ComputeDedupDataSize(scope *Scope, config string) (num_elements tf.Output)
- func ComputeDedupDataSizeV2(scope *Scope, config string, embedding_partitions string, ...) (num_elements tf.Output)
- func ComputeDedupDataTupleMask(scope *Scope, config string) (output_shape tf.Output)
- func ComputeDedupDataTupleMaskV2(scope *Scope, config string, embedding_partitions string, ...) (output_shape tf.Output)
- func Concat(scope *Scope, concat_dim tf.Output, values []tf.Output) (output tf.Output)
- func ConcatOffset(scope *Scope, concat_dim tf.Output, shape []tf.Output) (offset []tf.Output)
- func ConcatV2(scope *Scope, values []tf.Output, axis tf.Output) (output tf.Output)
- func ConcatenateDataset(scope *Scope, input_dataset tf.Output, another_dataset tf.Output, ...) (handle tf.Output)
- func ConfigureAndInitializeGlobalTPU(scope *Scope, optional ...ConfigureAndInitializeGlobalTPUAttr) (output tf.Output)
- func ConfigureDistributedTPU(scope *Scope, optional ...ConfigureDistributedTPUAttr) (topology tf.Output)
- func ConfigureTPUEmbedding(scope *Scope, config string) (o *tf.Operation)
- func ConfigureTPUEmbeddingHost(scope *Scope, common_config tf.Output, memory_config tf.Output, config string) (network_config tf.Output)
- func ConfigureTPUEmbeddingMemory(scope *Scope, common_config tf.Output) (memory_config tf.Output)
- func Conj(scope *Scope, input tf.Output) (output tf.Output)
- func ConjugateTranspose(scope *Scope, x tf.Output, perm tf.Output) (y tf.Output)
- func ConnectTPUEmbeddingHosts(scope *Scope, network_configs []tf.Output) (o *tf.Operation)
- func Const(scope *Scope, value interface{}) (output tf.Output)
- func ConsumeMutexLock(scope *Scope, mutex_lock tf.Output) (o *tf.Operation)
- func ControlTrigger(scope *Scope) (o *tf.Operation)
- func Conv(scope *Scope, input tf.Output, filter tf.Output, strides []int64, ...) (output tf.Output)
- func Conv2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, ...) (output tf.Output)
- func Conv2DBackpropFilter(scope *Scope, input tf.Output, filter_sizes tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv2DBackpropFilterV2(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv2DBackpropInput(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv2DBackpropInputV2(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv3D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, ...) (output tf.Output)
- func Conv3DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv3DBackpropFilterV2(scope *Scope, input tf.Output, filter_sizes tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv3DBackpropInput(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Conv3DBackpropInputV2(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Copy(scope *Scope, input tf.Output, optional ...CopyAttr) (output tf.Output)
- func CopyHost(scope *Scope, input tf.Output, optional ...CopyHostAttr) (output tf.Output)
- func Cos(scope *Scope, x tf.Output) (y tf.Output)
- func Cosh(scope *Scope, x tf.Output) (y tf.Output)
- func CropAndResize(scope *Scope, image tf.Output, boxes tf.Output, box_ind tf.Output, ...) (crops tf.Output)
- func CropAndResizeGradBoxes(scope *Scope, grads tf.Output, image tf.Output, boxes tf.Output, ...) (output tf.Output)
- func CropAndResizeGradImage(scope *Scope, grads tf.Output, boxes tf.Output, box_ind tf.Output, ...) (output tf.Output)
- func Cross(scope *Scope, a tf.Output, b tf.Output) (product tf.Output)
- func CrossReplicaSum(scope *Scope, input tf.Output, group_assignment tf.Output) (output tf.Output)
- func CudnnRNN(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, ...) (output tf.Output, output_h tf.Output, output_c tf.Output, ...)
- func CudnnRNNBackprop(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, ...) (input_backprop tf.Output, input_h_backprop tf.Output, ...)
- func CudnnRNNBackpropV2(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, ...) (input_backprop tf.Output, input_h_backprop tf.Output, ...)
- func CudnnRNNBackpropV3(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, ...) (input_backprop tf.Output, input_h_backprop tf.Output, ...)
- func CudnnRNNCanonicalToParams(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, ...) (params tf.Output)
- func CudnnRNNCanonicalToParamsV2(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, ...) (params tf.Output)
- func CudnnRNNParamsSize(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, ...) (params_size tf.Output)
- func CudnnRNNParamsToCanonical(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, ...) (weights []tf.Output, biases []tf.Output)
- func CudnnRNNParamsToCanonicalV2(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, ...) (weights []tf.Output, biases []tf.Output)
- func CudnnRNNV2(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, ...) (output tf.Output, output_h tf.Output, output_c tf.Output, ...)
- func CudnnRNNV3(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, ...) (output tf.Output, output_h tf.Output, output_c tf.Output, ...)
- func Cumprod(scope *Scope, x tf.Output, axis tf.Output, optional ...CumprodAttr) (out tf.Output)
- func Cumsum(scope *Scope, x tf.Output, axis tf.Output, optional ...CumsumAttr) (out tf.Output)
- func CumulativeLogsumexp(scope *Scope, x tf.Output, axis tf.Output, optional ...CumulativeLogsumexpAttr) (out tf.Output)
- func DTensorSetGlobalTPUArray(scope *Scope, topology tf.Output) (o *tf.Operation)
- func DataFormatDimMap(scope *Scope, x tf.Output, optional ...DataFormatDimMapAttr) (y tf.Output)
- func DataFormatVecPermute(scope *Scope, x tf.Output, optional ...DataFormatVecPermuteAttr) (y tf.Output)
- func DataServiceDataset(scope *Scope, dataset_id tf.Output, processing_mode tf.Output, ...) (handle tf.Output)
- func DataServiceDatasetV2(scope *Scope, dataset_id tf.Output, processing_mode tf.Output, ...) (handle tf.Output)
- func DatasetCardinality(scope *Scope, input_dataset tf.Output, optional ...DatasetCardinalityAttr) (cardinality tf.Output)
- func DatasetFingerprint(scope *Scope, input_dataset tf.Output) (fingerprint tf.Output)
- func DatasetFromGraph(scope *Scope, graph_def tf.Output) (handle tf.Output)
- func DatasetToGraph(scope *Scope, input_dataset tf.Output, optional ...DatasetToGraphAttr) (graph tf.Output)
- func DatasetToGraphV2(scope *Scope, input_dataset tf.Output, optional ...DatasetToGraphV2Attr) (graph tf.Output)
- func DatasetToSingleElement(scope *Scope, dataset tf.Output, output_types []tf.DataType, ...) (components []tf.Output)
- func DatasetToTFRecord(scope *Scope, input_dataset tf.Output, filename tf.Output, ...) (o *tf.Operation)
- func DebugGradientIdentity(scope *Scope, input tf.Output) (output tf.Output)
- func DebugIdentity(scope *Scope, input tf.Output, optional ...DebugIdentityAttr) (output tf.Output)
- func DebugIdentityV2(scope *Scope, input tf.Output, optional ...DebugIdentityV2Attr) (output tf.Output)
- func DebugIdentityV3(scope *Scope, input tf.Output, optional ...DebugIdentityV3Attr) (output tf.Output)
- func DebugNanCount(scope *Scope, input tf.Output, optional ...DebugNanCountAttr) (output tf.Output)
- func DebugNumericSummary(scope *Scope, input tf.Output, optional ...DebugNumericSummaryAttr) (output tf.Output)
- func DebugNumericSummaryV2(scope *Scope, input tf.Output, optional ...DebugNumericSummaryV2Attr) (output tf.Output)
- func DecodeAndCropJpeg(scope *Scope, contents tf.Output, crop_window tf.Output, ...) (image tf.Output)
- func DecodeBase64(scope *Scope, input tf.Output) (output tf.Output)
- func DecodeBmp(scope *Scope, contents tf.Output, optional ...DecodeBmpAttr) (image tf.Output)
- func DecodeCSV(scope *Scope, records tf.Output, record_defaults []tf.Output, ...) (output []tf.Output)
- func DecodeCompressed(scope *Scope, bytes tf.Output, optional ...DecodeCompressedAttr) (output tf.Output)
- func DecodeGif(scope *Scope, contents tf.Output) (image tf.Output)
- func DecodeImage(scope *Scope, contents tf.Output, optional ...DecodeImageAttr) (image tf.Output)
- func DecodeJSONExample(scope *Scope, json_examples tf.Output) (binary_examples tf.Output)
- func DecodeJpeg(scope *Scope, contents tf.Output, optional ...DecodeJpegAttr) (image tf.Output)
- func DecodePaddedRaw(scope *Scope, input_bytes tf.Output, fixed_length tf.Output, ...) (output tf.Output)
- func DecodePng(scope *Scope, contents tf.Output, optional ...DecodePngAttr) (image tf.Output)
- func DecodeProtoV2(scope *Scope, bytes tf.Output, message_type string, field_names []string, ...) (sizes tf.Output, values []tf.Output)
- func DecodeRaw(scope *Scope, bytes tf.Output, out_type tf.DataType, optional ...DecodeRawAttr) (output tf.Output)
- func DecodeWav(scope *Scope, contents tf.Output, optional ...DecodeWavAttr) (audio tf.Output, sample_rate tf.Output)
- func DeepCopy(scope *Scope, x tf.Output) (y tf.Output)
- func DeleteIterator(scope *Scope, handle tf.Output, deleter tf.Output) (o *tf.Operation)
- func DeleteMultiDeviceIterator(scope *Scope, multi_device_iterator tf.Output, iterators []tf.Output, ...) (o *tf.Operation)
- func DeleteSessionTensor(scope *Scope, handle tf.Output) (o *tf.Operation)
- func DenseBincount(scope *Scope, input tf.Output, size tf.Output, weights tf.Output, ...) (output tf.Output)
- func DenseCountSparseOutput(scope *Scope, values tf.Output, weights tf.Output, binary_output bool, ...) (output_indices tf.Output, output_values tf.Output, ...)
- func DenseToCSRSparseMatrix(scope *Scope, dense_input tf.Output, indices tf.Output) (sparse_output tf.Output)
- func DenseToDenseSetOperation(scope *Scope, set1 tf.Output, set2 tf.Output, set_operation string, ...) (result_indices tf.Output, result_values tf.Output, result_shape tf.Output)
- func DenseToSparseBatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, ...) (handle tf.Output)
- func DenseToSparseSetOperation(scope *Scope, set1 tf.Output, set2_indices tf.Output, set2_values tf.Output, ...) (result_indices tf.Output, result_values tf.Output, result_shape tf.Output)
- func DepthToSpace(scope *Scope, input tf.Output, block_size int64, optional ...DepthToSpaceAttr) (output tf.Output)
- func DepthwiseConv2dNative(scope *Scope, input tf.Output, filter tf.Output, strides []int64, ...) (output tf.Output)
- func DepthwiseConv2dNativeBackpropFilter(scope *Scope, input tf.Output, filter_sizes tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func DepthwiseConv2dNativeBackpropInput(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func Dequantize(scope *Scope, input tf.Output, min_range tf.Output, max_range tf.Output, ...) (output tf.Output)
- func DeserializeIterator(scope *Scope, resource_handle tf.Output, serialized tf.Output) (o *tf.Operation)
- func DeserializeManySparse(scope *Scope, serialized_sparse tf.Output, dtype tf.DataType) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output)
- func DeserializeSparse(scope *Scope, serialized_sparse tf.Output, dtype tf.DataType) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output)
- func DestroyResourceOp(scope *Scope, resource tf.Output, optional ...DestroyResourceOpAttr) (o *tf.Operation)
- func DeviceIndex(scope *Scope, device_names []string) (index tf.Output)
- func Diag(scope *Scope, diagonal tf.Output) (output tf.Output)
- func DiagPart(scope *Scope, input tf.Output) (diagonal tf.Output)
- func Digamma(scope *Scope, x tf.Output) (y tf.Output)
- func Dilation2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, ...) (output tf.Output)
- func Dilation2DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, ...) (filter_backprop tf.Output)
- func Dilation2DBackpropInput(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, ...) (in_backprop tf.Output)
- func DirectedInterleaveDataset(scope *Scope, selector_input_dataset tf.Output, ...) (handle tf.Output)
- func DisableCopyOnRead(scope *Scope, resource tf.Output) (o *tf.Operation)
- func Div(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func DivNoNan(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func DrawBoundingBoxes(scope *Scope, images tf.Output, boxes tf.Output) (output tf.Output)
- func DrawBoundingBoxesV2(scope *Scope, images tf.Output, boxes tf.Output, colors tf.Output) (output tf.Output)
- func DynamicEnqueueTPUEmbeddingArbitraryTensorBatch(scope *Scope, sample_indices_or_row_splits []tf.Output, ...) (o *tf.Operation)
- func DynamicPartition(scope *Scope, data tf.Output, partitions tf.Output, num_partitions int64) (outputs []tf.Output)
- func DynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged tf.Output)
- func EagerPyFunc(scope *Scope, input []tf.Output, token string, Tout []tf.DataType, ...) (output []tf.Output)
- func EditDistance(scope *Scope, hypothesis_indices tf.Output, hypothesis_values tf.Output, ...) (output tf.Output)
- func Eig(scope *Scope, input tf.Output, Tout tf.DataType, optional ...EigAttr) (e tf.Output, v tf.Output)
- func Einsum(scope *Scope, inputs []tf.Output, equation string) (output tf.Output)
- func Elu(scope *Scope, features tf.Output) (activations tf.Output)
- func EluGrad(scope *Scope, gradients tf.Output, outputs tf.Output) (backprops tf.Output)
- func Empty(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...EmptyAttr) (output tf.Output)
- func EmptyTensorList(scope *Scope, element_shape tf.Output, max_num_elements tf.Output, ...) (handle tf.Output)
- func EmptyTensorMap(scope *Scope) (handle tf.Output)
- func EncodeBase64(scope *Scope, input tf.Output, optional ...EncodeBase64Attr) (output tf.Output)
- func EncodeJpeg(scope *Scope, image tf.Output, optional ...EncodeJpegAttr) (contents tf.Output)
- func EncodeJpegVariableQuality(scope *Scope, images tf.Output, quality tf.Output) (contents tf.Output)
- func EncodePng(scope *Scope, image tf.Output, optional ...EncodePngAttr) (contents tf.Output)
- func EncodeProto(scope *Scope, sizes tf.Output, values []tf.Output, field_names []string, ...) (bytes tf.Output)
- func EncodeWav(scope *Scope, audio tf.Output, sample_rate tf.Output) (contents tf.Output)
- func EnqueueTPUEmbeddingArbitraryTensorBatch(scope *Scope, sample_indices_or_row_splits []tf.Output, ...) (o *tf.Operation)
- func EnqueueTPUEmbeddingBatch(scope *Scope, batch []tf.Output, mode_override tf.Output, ...) (o *tf.Operation)
- func EnqueueTPUEmbeddingIntegerBatch(scope *Scope, batch []tf.Output, mode_override tf.Output, ...) (o *tf.Operation)
- func EnqueueTPUEmbeddingRaggedTensorBatch(scope *Scope, sample_splits []tf.Output, embedding_indices []tf.Output, ...) (o *tf.Operation)
- func EnqueueTPUEmbeddingSparseBatch(scope *Scope, sample_indices []tf.Output, embedding_indices []tf.Output, ...) (o *tf.Operation)
- func EnqueueTPUEmbeddingSparseTensorBatch(scope *Scope, sample_indices []tf.Output, embedding_indices []tf.Output, ...) (o *tf.Operation)
- func EnsureShape(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output)
- func Enter(scope *Scope, data tf.Output, frame_name string, optional ...EnterAttr) (output tf.Output)
- func Equal(scope *Scope, x tf.Output, y tf.Output, optional ...EqualAttr) (z tf.Output)
- func Erf(scope *Scope, x tf.Output) (y tf.Output)
- func Erfc(scope *Scope, x tf.Output) (y tf.Output)
- func EuclideanNorm(scope *Scope, input tf.Output, axis tf.Output, optional ...EuclideanNormAttr) (output tf.Output)
- func ExecuteTPUEmbeddingPartitioner(scope *Scope, config string) (common_config tf.Output)
- func Exit(scope *Scope, data tf.Output) (output tf.Output)
- func Exp(scope *Scope, x tf.Output) (y tf.Output)
- func ExpandDims(scope *Scope, input tf.Output, axis tf.Output) (output tf.Output)
- func ExperimentalAutoShardDataset(scope *Scope, input_dataset tf.Output, num_workers tf.Output, index tf.Output, ...) (handle tf.Output)
- func ExperimentalBytesProducedStatsDataset(scope *Scope, input_dataset tf.Output, tag tf.Output, ...) (handle tf.Output)
- func ExperimentalDatasetCardinality(scope *Scope, input_dataset tf.Output) (cardinality tf.Output)
- func ExperimentalDatasetToTFRecord(scope *Scope, input_dataset tf.Output, filename tf.Output, ...) (o *tf.Operation)
- func ExperimentalDenseToSparseBatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, ...) (handle tf.Output)
- func ExperimentalDirectedInterleaveDataset(scope *Scope, selector_input_dataset tf.Output, ...) (handle tf.Output)
- func ExperimentalIgnoreErrorsDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, ...) (handle tf.Output)
- func ExperimentalIteratorGetDevice(scope *Scope, resource tf.Output) (device tf.Output)
- func ExperimentalLatencyStatsDataset(scope *Scope, input_dataset tf.Output, tag tf.Output, ...) (handle tf.Output)
- func ExperimentalMaxIntraOpParallelismDataset(scope *Scope, input_dataset tf.Output, max_intra_op_parallelism tf.Output, ...) (handle tf.Output)
- func ExperimentalParseExampleDataset(scope *Scope, input_dataset tf.Output, num_parallel_calls tf.Output, ...) (handle tf.Output)
- func ExperimentalPrivateThreadPoolDataset(scope *Scope, input_dataset tf.Output, num_threads tf.Output, ...) (handle tf.Output)
- func ExperimentalRandomDataset(scope *Scope, seed tf.Output, seed2 tf.Output, output_types []tf.DataType, ...) (handle tf.Output)
- func ExperimentalRebatchDataset(scope *Scope, input_dataset tf.Output, num_replicas tf.Output, ...) (handle tf.Output)
- func ExperimentalSlidingWindowDataset(scope *Scope, input_dataset tf.Output, window_size tf.Output, ...) (handle tf.Output)
- func ExperimentalSqlDataset(scope *Scope, driver_name tf.Output, data_source_name tf.Output, ...) (handle tf.Output)
- func ExperimentalStatsAggregatorHandle(scope *Scope, optional ...ExperimentalStatsAggregatorHandleAttr) (handle tf.Output)
- func ExperimentalStatsAggregatorSummary(scope *Scope, iterator tf.Output) (summary tf.Output)
- func ExperimentalThreadPoolDataset(scope *Scope, input_dataset tf.Output, thread_pool tf.Output, ...) (handle tf.Output)
- func ExperimentalThreadPoolHandle(scope *Scope, num_threads int64, display_name string, ...) (handle tf.Output)
- func ExperimentalUnbatchDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, ...) (handle tf.Output)
- func ExperimentalUniqueDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, ...) (handle tf.Output)
- func Expm1(scope *Scope, x tf.Output) (y tf.Output)
- func ExtractGlimpse(scope *Scope, input tf.Output, size tf.Output, offsets tf.Output, ...) (glimpse tf.Output)
- func ExtractGlimpseV2(scope *Scope, input tf.Output, size tf.Output, offsets tf.Output, ...) (glimpse tf.Output)
- func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides []int64, rates []int64, ...) (patches tf.Output)
- func ExtractJpegShape(scope *Scope, contents tf.Output, optional ...ExtractJpegShapeAttr) (image_shape tf.Output)
- func ExtractVolumePatches(scope *Scope, input tf.Output, ksizes []int64, strides []int64, padding string) (patches tf.Output)
- func FFT(scope *Scope, input tf.Output) (output tf.Output)
- func FFT2D(scope *Scope, input tf.Output) (output tf.Output)
- func FFT3D(scope *Scope, input tf.Output) (output tf.Output)
- func FFTND(scope *Scope, input tf.Output, fft_length tf.Output, axes tf.Output) (output tf.Output)
- func FIFOQueueV2(scope *Scope, component_types []tf.DataType, optional ...FIFOQueueV2Attr) (handle tf.Output)
- func Fact(scope *Scope) (fact tf.Output)
- func FakeParam(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.Output)
- func FakeQuantWithMinMaxArgs(scope *Scope, inputs tf.Output, optional ...FakeQuantWithMinMaxArgsAttr) (outputs tf.Output)
- func FakeQuantWithMinMaxArgsGradient(scope *Scope, gradients tf.Output, inputs tf.Output, ...) (backprops tf.Output)
- func FakeQuantWithMinMaxVars(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, ...) (outputs tf.Output)
- func FakeQuantWithMinMaxVarsGradient(scope *Scope, gradients tf.Output, inputs tf.Output, min tf.Output, ...) (backprops_wrt_input tf.Output, backprop_wrt_min tf.Output, ...)
- func FakeQuantWithMinMaxVarsPerChannel(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, ...) (outputs tf.Output)
- func FakeQuantWithMinMaxVarsPerChannelGradient(scope *Scope, gradients tf.Output, inputs tf.Output, min tf.Output, ...) (backprops_wrt_input tf.Output, backprop_wrt_min tf.Output, ...)
- func FileSystemSetConfiguration(scope *Scope, scheme tf.Output, key tf.Output, value tf.Output) (o *tf.Operation)
- func Fill(scope *Scope, dims tf.Output, value tf.Output) (output tf.Output)
- func FilterByLastComponentDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, ...) (output tf.Output)
- func FinalizeDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, ...) (handle tf.Output)
- func FinalizeTPUEmbedding(scope *Scope, common_config tf.Output, memory_config tf.Output) (o *tf.Operation)
- func FinalizeTPUEmbeddingV2(scope *Scope, common_config tf.Output, memory_config tf.Output) (embedding_partitions tf.Output, hbm_buffers_config tf.Output)
- func Fingerprint(scope *Scope, data tf.Output, method tf.Output) (fingerprint tf.Output)
- func FixedLengthRecordDataset(scope *Scope, filenames tf.Output, header_bytes tf.Output, ...) (handle tf.Output)
- func FixedLengthRecordReaderV2(scope *Scope, record_bytes int64, optional ...FixedLengthRecordReaderV2Attr) (reader_handle tf.Output)
- func FixedUnigramCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, ...) (sampled_candidates tf.Output, true_expected_count tf.Output, ...)
- func Floor(scope *Scope, x tf.Output) (y tf.Output)
- func FloorDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func FloorMod(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func FractionalAvgPool(scope *Scope, value tf.Output, pooling_ratio []float32, ...) (output tf.Output, row_pooling_sequence tf.Output, ...)
- func FractionalAvgPoolGrad(scope *Scope, orig_input_tensor_shape tf.Output, out_backprop tf.Output, ...) (output tf.Output)
- func FractionalMaxPool(scope *Scope, value tf.Output, pooling_ratio []float32, ...) (output tf.Output, row_pooling_sequence tf.Output, ...)
- func FractionalMaxPoolGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, ...) (output tf.Output)
- func FusedBatchNorm(scope *Scope, x tf.Output, scale tf.Output, offset tf.Output, mean tf.Output, ...) (y tf.Output, batch_mean tf.Output, batch_variance tf.Output, ...)
- func FusedBatchNormGrad(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, ...) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, ...)
- func FusedBatchNormGradV2(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, ...) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, ...)
- func FusedBatchNormGradV3(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, ...) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, ...)
- func FusedBatchNormV2(scope *Scope, x tf.Output, scale tf.Output, offset tf.Output, mean tf.Output, ...) (y tf.Output, batch_mean tf.Output, batch_variance tf.Output, ...)
- func FusedBatchNormV3(scope *Scope, x tf.Output, scale tf.Output, offset tf.Output, mean tf.Output, ...) (y tf.Output, batch_mean tf.Output, batch_variance tf.Output, ...)
- func FusedPadConv2D(scope *Scope, input tf.Output, paddings tf.Output, filter tf.Output, ...) (output tf.Output)
- func FusedResizeAndPadConv2D(scope *Scope, input tf.Output, size tf.Output, paddings tf.Output, ...) (output tf.Output)
- func GRUBlockCell(scope *Scope, x tf.Output, h_prev tf.Output, w_ru tf.Output, w_c tf.Output, ...) (r tf.Output, u tf.Output, c tf.Output, h tf.Output)
- func GRUBlockCellGrad(scope *Scope, x tf.Output, h_prev tf.Output, w_ru tf.Output, w_c tf.Output, ...) (d_x tf.Output, d_h_prev tf.Output, d_c_bar tf.Output, d_r_bar_u_bar tf.Output)
- func Gather(scope *Scope, params tf.Output, indices tf.Output, optional ...GatherAttr) (output tf.Output)
- func GatherNd(scope *Scope, params tf.Output, indices tf.Output, optional ...GatherNdAttr) (output tf.Output)
- func GatherV2(scope *Scope, params tf.Output, indices tf.Output, axis tf.Output, ...) (output tf.Output)
- func GenerateBoundingBoxProposals(scope *Scope, scores tf.Output, bbox_deltas tf.Output, image_info tf.Output, ...) (rois tf.Output, roi_probabilities tf.Output)
- func GenerateVocabRemapping(scope *Scope, new_vocab_file tf.Output, old_vocab_file tf.Output, ...) (remapping tf.Output, num_present tf.Output)
- func GetElementAtIndex(scope *Scope, dataset tf.Output, index tf.Output, output_types []tf.DataType, ...) (components []tf.Output)
- func GetOptions(scope *Scope, input_dataset tf.Output) (serialized_options tf.Output)
- func GetSessionHandle(scope *Scope, value tf.Output) (handle tf.Output)
- func GetSessionHandleV2(scope *Scope, value tf.Output) (handle tf.Output)
- func GetSessionTensor(scope *Scope, handle tf.Output, dtype tf.DataType) (value tf.Output)
- func GetTpuTaskId(scope *Scope) (tpu_task_id tf.Output)
- func Gradients(scope *Scope, y []tf.Output, x []tf.Output, dx ...tf.Output) (output []tf.Output)
- func Greater(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func GreaterEqual(scope *Scope, x tf.Output, y tf.Output) (z tf.Output)
- func GuaranteeConst(scope *Scope, input tf.Output) (output tf.Output)
- func HSVToRGB(scope *Scope, images tf.Output) (output tf.Output)
- func HashTableV2(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, ...) (table_handle tf.Output)
- func HistogramFixedWidth(scope *Scope, values tf.Output, value_range tf.Output, nbins tf.Output, ...) (out tf.Output)
- func HistogramSummary(scope *Scope, tag tf.Output, values tf.Output) (summary tf.Output)
- func HostConst(scope *Scope, value tf.Tensor, dtype tf.DataType) (output tf.Output)
- func IFFT(scope *Scope, input tf.Output) (output tf.Output)
- func IFFT2D(scope *Scope, input tf.Output) (output tf.Output)
- func IFFT3D(scope *Scope, input tf.Output) (output tf.Output)
- func IFFTND(scope *Scope, input tf.Output, fft_length tf.Output, axes tf.Output) (output tf.Output)
- func IRFFT(scope *Scope, input tf.Output, fft_length tf.Output, optional ...IRFFTAttr) (output tf.Output)
- func IRFFT2D(scope *Scope, input tf.Output, fft_length tf.Output, optional ...IRFFT2DAttr) (output tf.Output)
- func IRFFT3D(scope *Scope, input tf.Output, fft_length tf.Output, optional ...IRFFT3DAttr) (output tf.Output)
- func IRFFTND(scope *Scope, input tf.Output, fft_length tf.Output, axes tf.Output, ...) (output tf.Output)
- func Identity(scope *Scope, input tf.Output) (output tf.Output)
- func IdentityN(scope *Scope, input []tf.Output) (output []tf.Output)
- func IdentityReaderV2(scope *Scope, optional ...IdentityReaderV2Attr) (reader_handle tf.Output)
- func Igamma(scope *Scope, a tf.Output, x tf.Output) (z tf.Output)
- func IgammaGradA(scope *Scope, a tf.Output, x tf.Output) (z tf.Output)
- func Igammac(scope *Scope, a tf.Output, x tf.Output) (z tf.Output)
- func IgnoreErrorsDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, ...) (handle tf.Output)
- func Imag(scope *Scope, input tf.Output, optional ...ImagAttr) (output tf.Output)
- func ImageProjectiveTransformV2(scope *Scope, images tf.Output, transforms tf.Output, output_shape tf.Output, ...) (transformed_images tf.Output)
- func ImageProjectiveTransformV3(scope *Scope, images tf.Output, transforms tf.Output, output_shape tf.Output, ...) (transformed_images tf.Output)
- func ImageSummary(scope *Scope, tag tf.Output, tensor tf.Output, optional ...ImageSummaryAttr) (summary tf.Output)
- func ImmutableConst(scope *Scope, dtype tf.DataType, shape tf.Shape, memory_region_name string) (tensor tf.Output)
- func InTopK(scope *Scope, predictions tf.Output, targets tf.Output, k int64) (precision tf.Output)
- func InTopKV2(scope *Scope, predictions tf.Output, targets tf.Output, k tf.Output) (precision tf.Output)
- func InfeedDequeue(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.Output)
- func InfeedDequeueTuple(scope *Scope, dtypes []tf.DataType, shapes []tf.Shape) (outputs []tf.Output)
- func InfeedEnqueue(scope *Scope, input tf.Output, optional ...InfeedEnqueueAttr) (o *tf.Operation)
- func InfeedEnqueuePrelinearizedBuffer(scope *Scope, input tf.Output, ...) (o *tf.Operation)
- func InfeedEnqueueTuple(scope *Scope, inputs []tf.Output, shapes []tf.Shape, ...) (o *tf.Operation)
- func InitializeTableFromTextFileV2(scope *Scope, table_handle tf.Output, filename tf.Output, key_index int64, ...) (o *tf.Operation)
- func InitializeTableV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation)
- func InplaceAdd(scope *Scope, x tf.Output, i tf.Output, v tf.Output) (y tf.Output)
- func InplaceSub(scope *Scope, x tf.Output, i tf.Output, v tf.Output) (y tf.Output)
- func InplaceUpdate(scope *Scope, x tf.Output, i tf.Output, v tf.Output) (y tf.Output)
- func Inv(scope *Scope, x tf.Output) (y tf.Output)
- func InvGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output)
- func Invert(scope *Scope, x tf.Output) (y tf.Output)
- func InvertPermutation(scope *Scope, x tf.Output) (y tf.Output)
- func IsBoostedTreesEnsembleInitialized(scope *Scope, tree_ensemble_handle tf.Output) (is_initialized tf.Output)
- func IsBoostedTreesQuantileStreamResourceInitialized(scope *Scope, quantile_stream_resource_handle tf.Output) (is_initialized tf.Output)
- func IsFinite(scope *Scope, x tf.Output) (y tf.Output)
- func IsInf(scope *Scope, x tf.Output) (y tf.Output)
- func IsNan(scope *Scope, x tf.Output) (y tf.Output)
- func IsTPUEmbeddingInitialized(scope *Scope, optional ...IsTPUEmbeddingInitializedAttr) (is_tpu_embedding_initialized tf.Output)
- func IsotonicRegression(scope *Scope, input tf.Output, optional ...IsotonicRegressionAttr) (output tf.Output, segments tf.Output)
- func Iterator(scope *Scope, shared_name string, container string, output_types []tf.DataType, ...) (handle tf.Output)
- func IteratorFromStringHandle(scope *Scope, string_handle tf.Output, ...) (resource_handle tf.Output)
- func IteratorGetDevice(scope *Scope, resource tf.Output) (device tf.Output)
- func IteratorGetModelProto(scope *Scope, iterator tf.Output) (model_proto tf.Output)
- func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, ...) (components []tf.Output)
- func IteratorGetNextAsOptional(scope *Scope, iterator tf.Output, output_types []tf.DataType, ...) (optional tf.Output)
- func IteratorGetNextSync(scope *Scope, iterator tf.Output, output_types []tf.DataType, ...) (components []tf.Output)
- func IteratorToStringHandle(scope *Scope, resource_handle tf.Output) (string_handle tf.Output)
- func KMC2ChainInitialization(scope *Scope, distances tf.Output, seed tf.Output) (index tf.Output)
- func KmeansPlusPlusInitialization(scope *Scope, points tf.Output, num_to_sample tf.Output, seed tf.Output, ...) (samples tf.Output)
- func KthOrderStatistic(scope *Scope, input tf.Output, k int64) (output tf.Output)
- func L2Loss(scope *Scope, t tf.Output) (output tf.Output)
- func LMDBDataset(scope *Scope,