Documentation
¶
Index ¶
- func Covariance(data [][]float64, rowvar bool) ([][]float64, error)
- func Eigen(data [][]float64) ([]float64, [][]float64, error)
- func Euclidean(point []float64, data [][]float64) []float64
- func Float64TwoDimenToDense(data [][]float64) *mat.Dense
- func Float64TwoDimenToSymDense(data [][]float64) *mat.SymDense
- func PCA(data [][]float64, n int) ([][]float64, error)
- func ScatterPlot2DimenData(data [][]float64, label []string, params []string) error
- func Spectral(data [][]float64, radius float64) ([]string, error)
- type KMeans
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Covariance ¶
*
- Covariance()
- Helper function utilized for PCA
- Returns covariance matrix of data
- Rowvar utilized if variable data is arranged by row
func Float64TwoDimenToDense ¶
*
- Float64TwoDimenToDense()
- Helper function utilized for PCA
- Return mat.Dense instance of 2D float64 slice
func Float64TwoDimenToSymDense ¶
*
- Float64TwoDimenToDense()
- Helper function utilized for PCA
- Return mat.SymDense instance of 2D float64 slice
func PCA ¶
*
- PCA()
- Performs principal component analysis on given data
- Reduces dimensionality to n components
- Assumes data is organized via column
func ScatterPlot2DimenData ¶
*
- ScatterPlot2DimenData()
- Creates a scatterplot with provided data, labels, and plot parameters
- Params consist of output directory, title, and x/y labels
Types ¶
type KMeans ¶
*
- KMeans struct
- Stores centroids and number of clusters in model
Click to show internal directories.
Click to hide internal directories.