## README ¶

### Gonum cmplxs Package cmplxs provides a set of helper routines for dealing with slices of complex128. The functions avoid allocations to allow for use within tight loops without garbage collection overhead.

Expand ▾ Collapse ▴

## Documentation ¶

### Overview ¶

Package cmplxs provides a set of helper routines for dealing with slices of complex128. The functions avoid allocations to allow for use within tight loops without garbage collection overhead.

The convention used is that when a slice is being modified in place, it has the name dst.

### Constants ¶

This section is empty.

### Variables ¶

This section is empty.

### Functions ¶

#### func Abs ¶

`func Abs(dst []float64, s []complex128)`

Abs calculates the absolute values of the elements of s, and stores them in dst. It panics if the argument lengths do not match.

#### func Add ¶

`func Add(dst, s []complex128)`

Add adds, element-wise, the elements of s and dst, and stores the result in dst. It panics if the argument lengths do not match.

Example (Newslice)
```Output:

dst = [(7+10i) (9+11i) (11+12i) (13+14i)]
s1 = [(1+1i) (2+2i) (3+3i) (4+4i)]
s2 = [(5+7i) (6+7i) (7+7i) (8+8i)]
s3 = [(1+2i) (1+2i) (1+2i) (1+2i)]
```
Example (Simple)
```Output:

s1 = [(7+10i) (9+11i) (11+12i) (13+14i)]
s2 = [(5+7i) (6+7i) (7+7i) (8+8i)]
s3 = [(1+2i) (1+2i) (1+2i) (1+2i)]
```
Example (Unequallengths)
```Output:

Unequal lengths
```

#### func AddConst ¶

`func AddConst(c complex128, dst []complex128)`

AddConst adds the scalar c to all of the values in dst.

Example
```Output:

s = [(6+0i) (3+0i) (8+0i) (1+0i)]
```

#### func AddScaled ¶

`func AddScaled(dst []complex128, alpha complex128, s []complex128)`

AddScaled performs dst = dst + alpha * s. It panics if the slice argument lengths do not match.

#### func AddScaledTo ¶

`func AddScaledTo(dst, y []complex128, alpha complex128, s []complex128) []complex128`

AddScaledTo performs dst = y + alpha * s, where alpha is a scalar, and dst, y and s are all slices. It panics if the slice argument lengths do not match.

At the return of the function, dst[i] = y[i] + alpha * s[i]

#### func AddTo ¶

`func AddTo(dst, s, t []complex128) []complex128`

AddTo adds, element-wise, the elements of s and t and stores the result in dst. It panics if the argument lengths do not match.

#### func Complex ¶

`func Complex(dst []complex128, real, imag []float64) []complex128`

Complex fills each of the elements of dst with the complex number constructed from the corresponding elements of real and imag. It panics if the argument lengths do not match.

#### func Count ¶

`func Count(f func(complex128) bool, s []complex128) int`

Count applies the function f to every element of s and returns the number of times the function returned true.

#### func CumProd ¶

`func CumProd(dst, s []complex128) []complex128`

CumProd finds the cumulative product of elements of s and store it in place into dst so that

```dst[i] = s[i] * s[i-1] * s[i-2] * ... * s
```

It panics if the argument lengths do not match.

Example
```Output:

dst = [(1+1i) (0-4i) (12-12i) (-96+0i)]
s = [(1+1i) (-2-2i) (3+3i) (-4-4i)]
```

#### func CumSum ¶

`func CumSum(dst, s []complex128) []complex128`

CumSum finds the cumulative sum of elements of s and stores it in place into dst so that

```dst[i] = s[i] + s[i-1] + s[i-2] + ... + s
```

It panics if the argument lengths do not match.

Example
```Output:

dst = [(1+1i) (-1-1i) (2+2i) (-2-2i)]
s = [(1+1i) (-2-2i) (3+3i) (-4-4i)]
```

#### func Distance ¶

`func Distance(s, t []complex128, L float64) float64`

Distance computes the L-norm of s - t. See Norm for special cases. It panics if the slice argument lengths do not match.

#### func Div ¶

`func Div(dst, s []complex128)`

Div performs element-wise division dst / s and stores the result in dst. It panics if the argument lengths do not match.

#### func DivTo ¶

`func DivTo(dst, s, t []complex128) []complex128`

DivTo performs element-wise division s / t and stores the result in dst. It panics if the argument lengths do not match.

#### func Dot ¶

`func Dot(s1, s2 []complex128) complex128`

Dot computes the dot product of s1 and s2, i.e. sum_{i = 1}^N conj(s1[i])*s2[i]. It panics if the argument lengths do not match.

#### func Equal ¶

`func Equal(s1, s2 []complex128) bool`

Equal returns true when the slices have equal lengths and all elements are numerically identical.

#### func EqualApprox ¶

`func EqualApprox(s1, s2 []complex128, tol float64) bool`

EqualApprox returns true when the slices have equal lengths and all element pairs have an absolute tolerance less than tol or a relative tolerance less than tol.

#### func EqualFunc ¶

`func EqualFunc(s1, s2 []complex128, f func(complex128, complex128) bool) bool`

EqualFunc returns true when the slices have the same lengths and the function returns true for all element pairs.

#### func EqualLengths ¶

`func EqualLengths(slices ...[]complex128) bool`

EqualLengths returns true when all of the slices have equal length, and false otherwise. It also eturns true when there are no input slices.

#### func Find ¶

`func Find(inds []int, f func(complex128) bool, s []complex128, k int) ([]int, error)`

Find applies f to every element of s and returns the indices of the first k elements for which the f returns true, or all such elements if k < 0. Find will reslice inds to have 0 length, and will append found indices to inds. If k > 0 and there are fewer than k elements in s satisfying f, all of the found elements will be returned along with an error. At the return of the function, the input inds will be in an undetermined state.

#### func HasNaN ¶

`func HasNaN(s []complex128) bool`

HasNaN returns true when the slice s has any values that are NaN and false otherwise.

#### func Imag ¶

`func Imag(dst []float64, src []complex128) []float64`

Imag places the imaginary components of src into dst. It panics if the argument lengths do not match.

#### func LogSpan ¶

`func LogSpan(dst []complex128, l, u complex128) []complex128`

LogSpan returns a set of n equally spaced points in log space between, l and u where N is equal to len(dst). The first element of the resulting dst will be l and the final element of dst will be u. Panics if len(dst) < 2 Note that this call will return NaNs if either l or u are negative, and will return all zeros if l or u is zero. Also returns the mutated slice dst, so that it can be used in range, like:

```for i, x := range LogSpan(dst, l, u) { ... }
```

#### func MaxAbs ¶

`func MaxAbs(s []complex128) complex128`

MaxAbs returns the maximum absolute value in the input slice. It panics if s is zero length.

#### func MaxAbsIdx ¶

`func MaxAbsIdx(s []complex128) int`

MaxAbsIdx returns the index of the maximum absolute value in the input slice. If several entries have the maximum absolute value, the first such index is returned. It panics if s is zero length.

#### func MinAbs ¶

`func MinAbs(s []complex128) complex128`

MinAbs returns the minimum absolute value in the input slice. It panics if s is zero length.

#### func MinAbsIdx ¶

`func MinAbsIdx(s []complex128) int`

MinAbsIdx returns the index of the minimum absolute value in the input slice. If several entries have the minimum absolute value, the first such index is returned. It panics if s is zero length.

#### func Mul ¶

`func Mul(dst, s []complex128)`

Mul performs element-wise multiplication between dst and s and stores the result in dst. It panics if the argument lengths do not match.

#### func MulTo ¶

`func MulTo(dst, s, t []complex128) []complex128`

MulTo performs element-wise multiplication between s and t and stores the result in dst. It panics if the argument lengths do not match.

#### func NearestIdx ¶

`func NearestIdx(s []complex128, v complex128) int`

NearestIdx returns the index of the element in s whose value is nearest to v. If several such elements exist, the lowest index is returned. It panics if s is zero length.

#### func Norm ¶

`func Norm(s []complex128, L float64) float64`

Norm returns the L-norm of the slice S, defined as (sum_{i=1}^N abs(s[i])^L)^{1/L} Special cases: L = math.Inf(1) gives the maximum absolute value. Does not correctly compute the zero norm (use Count).

#### func Prod ¶

`func Prod(s []complex128) complex128`

Prod returns the product of the elements of the slice. Returns 1 if len(s) = 0.

#### func Real ¶

`func Real(dst []float64, src []complex128) []float64`

Real places the real components of src into dst. It panics if the argument lengths do not match.

#### func Reverse ¶

`func Reverse(s []complex128)`

Reverse reverses the order of elements in the slice.

#### func Same ¶

`func Same(s, t []complex128) bool`

Same returns true when the input slices have the same length and all elements have the same value with NaN treated as the same.

#### func Scale ¶

`func Scale(c complex128, dst []complex128)`

Scale multiplies every element in dst by the scalar c.

#### func ScaleTo ¶

`func ScaleTo(dst []complex128, c complex128, s []complex128) []complex128`

ScaleTo multiplies the elements in s by c and stores the result in dst. It panics if the slice argument lengths do not match.

#### func Span ¶

`func Span(dst []complex128, l, u complex128) []complex128`

Span returns a set of N equally spaced points between l and u, where N is equal to the length of the destination. The first element of the destination is l, the final element of the destination is u. It panics if the length of dst is less than 2.

Span also returns the mutated slice dst, so that it can be used in range expressions, like:

```for i, x := range Span(dst, l, u) { ... }
```

#### func Sub ¶

`func Sub(dst, s []complex128)`

Sub subtracts, element-wise, the elements of s from dst. It panics if the argument lengths do not match.

#### func SubTo ¶

`func SubTo(dst, s, t []complex128) []complex128`

SubTo subtracts, element-wise, the elements of t from s and stores the result in dst. It panics if the argument lengths do not match.

#### func Sum ¶

`func Sum(s []complex128) complex128`

Sum returns the sum of the elements of the slice.

### Types ¶

This section is empty.

## Directories ¶

Path Synopsis
Package cscalar provides a set of helper routines for dealing with complex128 values.
Package cscalar provides a set of helper routines for dealing with complex128 values.