Documentation ¶
Overview ¶
Package cluster contains clustering algorithms.
Index ¶
- func DBSCAN(data [][]int, eps float64, mp int) []map[int][]int
- func DBSCANData(data []map[int]int, eps float64, mp int) [][]map[int]int
- func KMeans(k int, data [][]int) []map[int][]int
- func KMeansData(k int, data []map[int]int) []map[int][]int
- func KMeansDataI(k int, data []map[int]int) [][]map[int]int
- func KMeansF(k int, D [][]float64, sc map[int]int) []map[int][]float64
- func KMeansFData(k int, D []map[int]int) []map[int][]float64
- func KMeansI(k int, D [][]float64) []int
- func KMeansMuesli(k int, M [][]int, sc map[int]int) []map[int][]int
- func KMeansMuesliF(k int, D [][]float64, sc map[int]int) []map[int][]float64
- func KMedoid(k int, data [][]int) []map[int][]int
- func KMode(k int, data [][]int) []map[int][]int
- func OPTICS(data [][]int, eps float64, mp int) []map[int][]int
- func OldKMeans(k int, data [][]int) []map[int][]int
- func OldKMeansF(k int, D [][]float64, F metrics.MetricF) []map[int][]float64
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func DBSCAN ¶
DBSCAN Density-based spatial clustering of applications with noise. Parameters:
- data is data matrix;
- eps is epsilon maximum distance between density core points;
- mp is minimum number of points to be considered core point.
func OPTICS ¶
OPTICS - Ordering points to identify the clustering structure (OPTICS). OPTICS is similar to DBSCAN with the exception that instead of an epsilon to bound the distance between points, OPTICS replaces that epsilon with a new epsilon that upper bounds the maximum possible epsilon a DBSCAN would take. Parameters:
- data is data matrix;
- eps is a maximum distance between density core points upper bound;
- mp is minimum number of points to be considered core point.
Types ¶
This section is empty.
Source Files ¶
Click to show internal directories.
Click to hide internal directories.