tree

package
v0.0.0-...-d229d73 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 2, 2024 License: MIT Imports: 3 Imported by: 0

README

在计算机科学中,树(tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。 它是由n(n>0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

tree

它具有以下的特点:

  1. 每个节点有零个或多个子节点(child);
  2. 没有父节点的节点称为根节点(root);
  3. 每一个非根节点有且只有一个父节点(parent);
  4. 除了根节点外,每个子节点可以分为多个不相交的子树;

一些基本概念

  1. 节点(node)的度:

    一个节点含有的子树的个数称为该节点的度;

  2. 树的度:

    一棵树中,最大的节点的度称为树的度;

  3. 叶节点或终端节点(leaf):

    度为零的节点;

  4. 非终端节点或分支节点:

    度不为零的节点;

  5. 父亲节点或父节点:

    若一个节点含有子节点,则这个节点称为其子节点的父节点;

  6. 孩子节点或子节点:

    一个节点含有的子树的根节点称为该节点的子节点;

  7. 兄弟节点(sibling):

    具有相同父节点的节点互称为兄弟节点;

  8. 节点的层次:

    从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

  9. 树的高度或深度(depth):

    树中节点的最大层次;

  10. 堂兄弟节点:

    父节点在同一层的节点互为堂兄弟;

  11. 节点的祖先:

    从根到该节点所经分支上的所有节点;

  12. 子孙:

    以某节点为根的子树中任一节点都称为该节点的子孙。

  13. 森林:

    由m(m>=0)棵互不相交的树的集合称为森林;

遍历与搜索

从二叉树的根节点出发,节点的遍历分为三个主要步骤:对当前节点进行操作(称为“访问”节点)、遍历左边子节点、遍历右边子节点。这三个步骤的先后顺序也是不同遍历方式的根本区别。

深度优先遍历(Depth-First-Search, DFS)

如果把左节点和右节点的位置固定不动,那么:

  1. 根节点放在左节点的左边,称为前序遍历(Pre-Order Traversal);
  2. 根节点放在左节点和右节点的中间,称为中序遍历(In-Order Traversal);
  3. 根节点放在右节点的右边,称为后序遍历(Post-Order Traversal)。
广度优先遍历(Breadth-First-Search, BFS)

和深度优先遍历不同,广度优先遍历会先访问离根节点最近的节点。二叉树的广度优先遍历又称按层次遍历。算法借助队列实现。

实现
  1. 首先将根节点放入队列中。
  2. 从队列中取出第一个节点,并检验它是否为目标。 如果找到目标,则结束搜寻并回传结果。 否则将它所有尚未检验过的直接子节点加入队列中。
  3. 若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。
  4. 重复步骤2。

树的种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
  • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
    • 二叉树:每个节点最多含有两个子树的树称为二叉树;
    • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树;
      • 满二叉树:所有叶节点都在最底层的完全二叉树;
    • 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
    • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
  • 霍夫曼树:带权路径最短的二叉树称为哈夫曼树或最优二叉树;
  • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func BFS

func BFS(root *TreeNode)

广度优先遍历

func InOrderRecursion

func InOrderRecursion(root *TreeNode) []int

InOrderRecursion : 中序遍历的递归实现。

func InOrderStack

func InOrderStack(root *TreeNode) []int

InOrderStack : 中序遍历的非递归实现。

func PostOrderRecursion

func PostOrderRecursion(root *TreeNode) []int

PostOrderRecursion : 后序遍历的递归实现。

func PostOrderStack

func PostOrderStack(root *TreeNode) []int

PostOrderStack : 后序遍历的非递归实现。

func PreOrderRecursion

func PreOrderRecursion(root *TreeNode) []int

PreOrderRecursion : 前序遍历的递归实现。

func PreOrderStack

func PreOrderStack(root *TreeNode) []int

PreOrderStack : 前序遍历的非递归实现。

Types

type AVL

type AVL struct {
	sync.RWMutex
	// contains filtered or unexported fields
}

AVL(Adelson-Velskii & Landis)树是带有平衡条件的二叉查找树(BST),其每个节点的左子树和右子树的高度最多差1。 查找、插入和删除在平均和最坏情况下的时间复杂度都是O(log(n))。

func NewAVL

func NewAVL() *AVL

AVL Construtor

func (*AVL) Delete

func (avl *AVL) Delete(el int) bool

func (*AVL) Insert

func (avl *AVL) Insert(el int) bool

func (*AVL) Search

func (avl *AVL) Search(el int) bool

type BST

type BST struct {
	sync.RWMutex
	// contains filtered or unexported fields
}

二叉查找树(Binary Search Tree)是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。

func NewBST

func NewBST() *BST

BST Construtor

func (*BST) Delete

func (b *BST) Delete(el int) bool

在二叉查找树删除结点

func (*BST) Insert

func (b *BST) Insert(el int) bool

在二叉搜索树插入节点

func (*BST) Search

func (b *BST) Search(el int) bool

在二叉搜索树查找一个节点

type TreeNode

type TreeNode struct {
	Val   int
	Left  *TreeNode
	Right *TreeNode
}

func (*TreeNode) String

func (t *TreeNode) String() string

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL