DataQL

A powerful CLI tool for querying and transforming data across multiple formats
DataQL is a CLI tool developed in Go that allows you to query and manipulate data files using SQL statements.
It loads data into an SQLite database (in-memory or file-based) enabling powerful SQL operations on your data.
Features
Current:
- Multi-format support: CSV, JSON, JSONL/NDJSON with auto-detection
- Execute SQL queries using SQLite syntax
- Export results to
.csv or .jsonl formats
- Interactive REPL mode with command history
- Progress bar for large file operations
- Parallel file processing for multiple inputs
- Automatic flattening of nested JSON objects
Roadmap:
- Additional formats: XML, Parquet, Excel
- Database connectors: PostgreSQL, MySQL, MongoDB
- Cloud storage: S3, GCS, Azure Blob
- HTTP/HTTPS URLs as data sources
- REPL with autocomplete and syntax highlighting
- Interactive datasource configuration
Installation
Quick Install (Recommended)
Linux / macOS:
curl -fsSL https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/install.sh | bash
Windows (PowerShell):
irm https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/install.ps1 | iex
Install Options
Specific version:
# Linux/macOS
curl -fsSL https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/install.sh | bash -s -- --version v1.0.0
# Windows
$env:DATAQL_VERSION="v1.0.0"; irm https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/install.ps1 | iex
User installation (no sudo/admin required):
# Linux/macOS
curl -fsSL https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/install.sh | bash -s -- --local
# Windows
$env:DATAQL_USER_INSTALL="true"; irm https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/install.ps1 | iex
From Source
# Clone the repository
git clone https://github.com/adrianolaselva/dataql.git
cd dataql
# Build and install
make build
make install # requires sudo
# or
make install-local # installs to ~/.local/bin
Verify Installation
dataql --version
Uninstall
Linux / macOS:
curl -fsSL https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/uninstall.sh | bash
Windows (PowerShell):
irm https://raw.githubusercontent.com/adrianolaselva/dataql/main/scripts/uninstall.ps1 | iex
Usage
Basic Usage
Load a data file and start interactive mode (format is auto-detected):
# CSV file
dataql run -f data.csv -d ","
# JSON file (array or single object)
dataql run -f data.json
# JSONL/NDJSON file (one JSON per line)
dataql run -f data.jsonl
| Format |
Extensions |
Description |
| CSV |
.csv |
Comma-separated values with configurable delimiter |
| JSON |
.json |
JSON arrays or single objects |
| JSONL |
.jsonl, .ndjson |
Newline-delimited JSON (streaming) |
Command Line Options
| Flag |
Short |
Description |
Default |
--file |
-f |
Input file(s) (CSV, JSON, JSONL) |
Required |
--delimiter |
-d |
CSV delimiter (only for CSV files) |
, |
--query |
-q |
SQL query to execute |
- |
--export |
-e |
Export path |
- |
--type |
-t |
Export format (csv, jsonl) |
- |
--storage |
-s |
SQLite file path (for persistence) |
In-memory |
--lines |
-l |
Limit number of lines/records to read |
All |
--collection |
-c |
Custom table name |
Filename |
Examples
Interactive Mode:
dataql run -f sales.csv -d ";"
dataql> SELECT product, SUM(amount) as total FROM sales GROUP BY product ORDER BY total DESC LIMIT 10;
product total
Widget Pro 125430.50
Gadget Plus 98210.00
...
Execute Query and Display Results:
dataql run -f data.csv -d "," -q "SELECT * FROM data WHERE amount > 100 LIMIT 10"
Export to JSONL:
dataql run -f input.csv -d "," \
-q "SELECT id, name, value FROM input WHERE status = 'active'" \
-e output.jsonl -t jsonl
Export to CSV:
dataql run -f input.csv -d "," \
-q "SELECT * FROM input" \
-e output.csv -t csv
Multiple Input Files:
dataql run -f file1.csv -f file2.csv -d "," \
-q "SELECT a.*, b.extra FROM file1 a JOIN file2 b ON a.id = b.id"
Query JSON Files:
# JSON array
dataql run -f users.json -q "SELECT name, email FROM users WHERE status = 'active'"
# JSON with nested objects (automatically flattened)
# {"user": {"name": "John", "address": {"city": "NYC"}}}
# becomes columns: user_name, user_address_city
dataql run -f data.json -q "SELECT user_name, user_address_city FROM data"
Query JSONL/NDJSON Files:
# JSONL is ideal for large datasets (streaming, low memory)
dataql run -f logs.jsonl -q "SELECT level, message, timestamp FROM logs WHERE level = 'ERROR'"
# Works with .ndjson extension too
dataql run -f events.ndjson -q "SELECT COUNT(*) as total FROM events"
Custom Table Name:
# Use --collection to specify a custom table name
dataql run -f data.json -c my_table -q "SELECT * FROM my_table"
Persist to SQLite File:
dataql run -f data.csv -d "," -s ./database.db
Real-World Example
# Download sample data
wget https://www.stats.govt.nz/assets/Uploads/Annual-enterprise-survey/Annual-enterprise-survey-2021-financial-year-provisional/Download-data/annual-enterprise-survey-2021-financial-year-provisional-csv.csv -O survey.csv
# Query and export
dataql run -f survey.csv -d "," \
-q "SELECT Year, Industry_aggregation_NZSIOC as industry, Variable_name as metric, Value as amount FROM survey WHERE Value > 1000" \
-e analysis.jsonl -t jsonl
SQL Reference
DataQL uses SQLite under the hood, supporting standard SQL syntax:
-- Basic SELECT
SELECT column1, column2 FROM tablename;
-- Filtering
SELECT * FROM data WHERE amount > 100 AND status = 'active';
-- Aggregation
SELECT category, COUNT(*), SUM(value) FROM data GROUP BY category;
-- Joins (multiple files)
SELECT a.*, b.extra FROM file1 a JOIN file2 b ON a.id = b.id;
-- Ordering and Limiting
SELECT * FROM data ORDER BY created_at DESC LIMIT 100;
Note: Table names are derived from filenames (without extension). For sales.csv, sales.json, or sales.jsonl, use SELECT * FROM sales. Use --collection flag to specify a custom table name.
Development
Prerequisites
- Go 1.22 or higher
- GCC (for SQLite compilation)
Building
make build
Testing
make test
Linting
make lint
Contributing
Contributions are welcome! Please read our Contributing Guide for details on our code of conduct and the process for submitting pull requests.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature)
- Commit your changes (
git commit -m 'Add amazing feature')
- Push to the branch (
git push origin feature/amazing-feature)
- Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments