< Previous
Next >
You are given an m x n
binary matrix matrix
.
You can choose any number of columns in the matrix and flip every cell in that column (i.e., Change the value of the cell from 0
to 1
or vice versa).
Return the maximum number of rows that have all values equal after some number of flips.
Example 1:
Input: matrix = [[0,1],[1,1]]
Output: 1
Explanation: After flipping no values, 1 row has all values equal.
Example 2:
Input: matrix = [[0,1],[1,0]]
Output: 2
Explanation: After flipping values in the first column, both rows have equal values.
Example 3:
Input: matrix = [[0,0,0],[0,0,1],[1,1,0]]
Output: 2
Explanation: After flipping values in the first two columns, the last two rows have equal values.
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
is either 0
or 1
.
[Array]
[Hash Table]
[Matrix]
Hints
Hint 1
Flipping a subset of columns is like doing a bitwise XOR of some number K onto each row. We want rows X with X ^ K = all 0s or all 1s. This is the same as X = X^K ^K = (all 0s or all 1s) ^ K, so we want to count rows that have opposite bits set. For example, if K = 1, then we count rows X = (00000...001, or 1111....110).