lo

package module
v0.0.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Apr 27, 2025 License: MIT Imports: 17 Imported by: 0

README

lo - Iterate over slices, maps, channels...

基于 samber/lo 的 Go 库,增加了一些实用的函数。

tag Go Version GoDoc Build Status Go report Coverage Contributors License

samber/lo is a Lodash-style Go library based on Go 1.18+ Generics.

A utility library based on Go 1.18+ generics that makes it easier to work with slices, maps, strings, channels, and functions. It provides dozens of handy methods to simplify common coding tasks and improve code readability. It may look like Lodash in some aspects.

5 to 10 helpers may overlap with those from the Go standard library, in packages slices and maps. I feel this library is legitimate and offers many more valuable abstractions.

See also:

  • samber/do: A dependency injection toolkit based on Go 1.18+ Generics
  • samber/mo: Monads based on Go 1.18+ Generics (Option, Result, Either...)

Why this name?

I wanted a short name, similar to "Lodash", and no Go package uses this name.

lo

🚀 Install

go get github.com/big-cabbage/lo@v1

This library is v1 and follows SemVer strictly.

No breaking changes will be made to exported APIs before v2.0.0.

This library has no dependencies outside the Go standard library.

💡 Usage

You can import lo using:

import (
    "github.com/big-cabbage/lo"
    lop "github.com/big-cabbage/lo/parallel"
    lom "github.com/big-cabbage/lo/mutable"
)

Then use one of the helpers below:

names := lo.Uniq([]string{"Samuel", "John", "Samuel"})
// []string{"Samuel", "John"}
Tips for lazy developers

I cannot recommend it, but in case you are too lazy for repeating lo. everywhere, you can import the entire library into the namespace.

import (
    . "github.com/big-cabbage/lo"
)

I take no responsibility on this junk. 😁 💩

🤠 Spec

GoDoc: https://godoc.org/github.com/big-cabbage/lo

Supported helpers for slices:

Supported helpers for maps:

Supported math helpers:

Supported helpers for strings:

Supported helpers for tuples:

Supported helpers for time and duration:

Supported helpers for channels:

Supported intersection helpers:

Supported search helpers:

Conditional helpers:

Type manipulation helpers:

Function helpers:

Concurrency helpers:

Error handling:

Constraints:

  • Clonable
Filter

Iterates over a collection and returns an array of all the elements the predicate function returns true for.

even := lo.Filter([]int{1, 2, 3, 4}, func(x int, index int) bool {
    return x%2 == 0
})
// []int{2, 4}

[play]

Mutable: like lo.Filter(), but the slice is updated in place.

import lom "github.com/big-cabbage/lo/mutable"

list := []int{1, 2, 3, 4}
newList := lom.Filter(list, func(x int) bool {
    return x%2 == 0
})

list
// []int{2, 4, 3, 4}

newList
// []int{2, 4}
Map

Manipulates a slice of one type and transforms it into a slice of another type:

import "github.com/big-cabbage/lo"

lo.Map([]int64{1, 2, 3, 4}, func(x int64, index int) string {
    return strconv.FormatInt(x, 10)
})
// []string{"1", "2", "3", "4"}

[play]

Parallel processing: like lo.Map(), but the mapper function is called in a goroutine. Results are returned in the same order.

import lop "github.com/big-cabbage/lo/parallel"

lop.Map([]int64{1, 2, 3, 4}, func(x int64, _ int) string {
    return strconv.FormatInt(x, 10)
})
// []string{"1", "2", "3", "4"}

Mutable: like lo.Map(), but the slice is updated in place.

import lom "github.com/big-cabbage/lo/mutable"

list := []int{1, 2, 3, 4}
lom.Map(list, func(x int) int {
    return i*2
})
// []int{2, 4, 6, 8}
UniqMap

Manipulates a slice and transforms it to a slice of another type with unique values.

type User struct {
    Name string
    Age  int
}
users := []User{{Name: "Alex", Age: 10}, {Name: "Alex", Age: 12}, {Name: "Bob", Age: 11}, {Name: "Alice", Age: 20}}

names := lo.UniqMap(users, func(u User, index int) string {
    return u.Name
})
// []string{"Alex", "Bob", "Alice"}
FilterMap

Returns a slice which obtained after both filtering and mapping using the given callback function.

The callback function should return two values: the result of the mapping operation and whether the result element should be included or not.

matching := lo.FilterMap([]string{"cpu", "gpu", "mouse", "keyboard"}, func(x string, _ int) (string, bool) {
    if strings.HasSuffix(x, "pu") {
        return "xpu", true
    }
    return "", false
})
// []string{"xpu", "xpu"}

[play]

FlatMap

Manipulates a slice and transforms and flattens it to a slice of another type. The transform function can either return a slice or a nil, and in the nil case no value is added to the final slice.

lo.FlatMap([]int64{0, 1, 2}, func(x int64, _ int) []string {
    return []string{
        strconv.FormatInt(x, 10),
        strconv.FormatInt(x, 10),
    }
})
// []string{"0", "0", "1", "1", "2", "2"}

[play]

Reduce

Reduces a collection to a single value. The value is calculated by accumulating the result of running each element in the collection through an accumulator function. Each successive invocation is supplied with the return value returned by the previous call.

sum := lo.Reduce([]int{1, 2, 3, 4}, func(agg int, item int, _ int) int {
    return agg + item
}, 0)
// 10

[play]

ReduceRight

Like lo.Reduce except that it iterates over elements of collection from right to left.

result := lo.ReduceRight([][]int{{0, 1}, {2, 3}, {4, 5}}, func(agg []int, item []int, _ int) []int {
    return append(agg, item...)
}, []int{})
// []int{4, 5, 2, 3, 0, 1}

[play]

ForEach

Iterates over elements of a collection and invokes the function over each element.

import "github.com/big-cabbage/lo"

lo.ForEach([]string{"hello", "world"}, func(x string, _ int) {
    println(x)
})
// prints "hello\nworld\n"

[play]

Parallel processing: like lo.ForEach(), but the callback is called as a goroutine.

import lop "github.com/big-cabbage/lo/parallel"

lop.ForEach([]string{"hello", "world"}, func(x string, _ int) {
    println(x)
})
// prints "hello\nworld\n" or "world\nhello\n"
ForEachWhile

Iterates over collection elements and invokes iteratee for each element collection return value decide to continue or break, like do while().

list := []int64{1, 2, -42, 4}

lo.ForEachWhile(list, func(x int64, _ int) bool {
	if x < 0 {
		return false
	}
	fmt.Println(x)
	return true
})
// 1
// 2

[play]

Times

Times invokes the iteratee n times, returning an array of the results of each invocation. The iteratee is invoked with index as argument.

import "github.com/big-cabbage/lo"

lo.Times(3, func(i int) string {
    return strconv.FormatInt(int64(i), 10)
})
// []string{"0", "1", "2"}

[play]

Parallel processing: like lo.Times(), but callback is called in goroutine.

import lop "github.com/big-cabbage/lo/parallel"

lop.Times(3, func(i int) string {
    return strconv.FormatInt(int64(i), 10)
})
// []string{"0", "1", "2"}
Uniq

Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array.

uniqValues := lo.Uniq([]int{1, 2, 2, 1})
// []int{1, 2}

[play]

UniqBy

Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array. It accepts iteratee which is invoked for each element in array to generate the criterion by which uniqueness is computed.

uniqValues := lo.UniqBy([]int{0, 1, 2, 3, 4, 5}, func(i int) int {
    return i%3
})
// []int{0, 1, 2}

[play]

GroupBy

Returns an object composed of keys generated from the results of running each element of collection through iteratee.

import lo "github.com/big-cabbage/lo"

groups := lo.GroupBy([]int{0, 1, 2, 3, 4, 5}, func(i int) int {
    return i%3
})
// map[int][]int{0: []int{0, 3}, 1: []int{1, 4}, 2: []int{2, 5}}

[play]

Parallel processing: like lo.GroupBy(), but callback is called in goroutine.

import lop "github.com/big-cabbage/lo/parallel"

lop.GroupBy([]int{0, 1, 2, 3, 4, 5}, func(i int) int {
    return i%3
})
// map[int][]int{0: []int{0, 3}, 1: []int{1, 4}, 2: []int{2, 5}}
GroupByMap

Returns an object composed of keys generated from the results of running each element of collection through iteratee.

import lo "github.com/big-cabbage/lo"

groups := lo.GroupByMap([]int{0, 1, 2, 3, 4, 5}, func(i int) (int, int) {
    return i%3, i*2
})
// map[int][]int{0: []int{0, 6}, 1: []int{2, 8}, 2: []int{4, 10}}
Chunk

Returns an array of elements split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements.

lo.Chunk([]int{0, 1, 2, 3, 4, 5}, 2)
// [][]int{{0, 1}, {2, 3}, {4, 5}}

lo.Chunk([]int{0, 1, 2, 3, 4, 5, 6}, 2)
// [][]int{{0, 1}, {2, 3}, {4, 5}, {6}}

lo.Chunk([]int{}, 2)
// [][]int{}

lo.Chunk([]int{0}, 2)
// [][]int{{0}}

[play]

PartitionBy

Returns an array of elements split into groups. The order of grouped values is determined by the order they occur in collection. The grouping is generated from the results of running each element of collection through iteratee.

import lo "github.com/big-cabbage/lo"

partitions := lo.PartitionBy([]int{-2, -1, 0, 1, 2, 3, 4, 5}, func(x int) string {
    if x < 0 {
        return "negative"
    } else if x%2 == 0 {
        return "even"
    }
    return "odd"
})
// [][]int{{-2, -1}, {0, 2, 4}, {1, 3, 5}}

[play]

Parallel processing: like lo.PartitionBy(), but callback is called in goroutine. Results are returned in the same order.

import lop "github.com/big-cabbage/lo/parallel"

partitions := lop.PartitionBy([]int{-2, -1, 0, 1, 2, 3, 4, 5}, func(x int) string {
    if x < 0 {
        return "negative"
    } else if x%2 == 0 {
        return "even"
    }
    return "odd"
})
// [][]int{{-2, -1}, {0, 2, 4}, {1, 3, 5}}
Flatten

Returns an array a single level deep.

flat := lo.Flatten([][]int{{0, 1}, {2, 3, 4, 5}})
// []int{0, 1, 2, 3, 4, 5}

[play]

Interleave

Round-robin alternating input slices and sequentially appending value at index into result.

interleaved := lo.Interleave([]int{1, 4, 7}, []int{2, 5, 8}, []int{3, 6, 9})
// []int{1, 2, 3, 4, 5, 6, 7, 8, 9}

interleaved := lo.Interleave([]int{1}, []int{2, 5, 8}, []int{3, 6}, []int{4, 7, 9, 10})
// []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

[play]

Shuffle

Returns an array of shuffled values. Uses the Fisher-Yates shuffle algorithm.

⚠️ This helper is mutable.

import lom "github.com/big-cabbage/lo/mutable"

list := []int{0, 1, 2, 3, 4, 5}
lom.Shuffle(list)

list
// []int{1, 4, 0, 3, 5, 2}

[play]

Reverse

Reverses array so that the first element becomes the last, the second element becomes the second to last, and so on.

⚠️ This helper is mutable.

import lom "github.com/big-cabbage/lo/mutable"

list := []int{0, 1, 2, 3, 4, 5}
lom.Reverse(list)

list
// []int{5, 4, 3, 2, 1, 0}

[play]

Fill

Fills elements of array with initial value.

type foo struct {
  bar string
}

func (f foo) Clone() foo {
  return foo{f.bar}
}

initializedSlice := lo.Fill([]foo{foo{"a"}, foo{"a"}}, foo{"b"})
// []foo{foo{"b"}, foo{"b"}}

[play]

Repeat

Builds a slice with N copies of initial value.

type foo struct {
  bar string
}

func (f foo) Clone() foo {
  return foo{f.bar}
}

slice := lo.Repeat(2, foo{"a"})
// []foo{foo{"a"}, foo{"a"}}

[play]

RepeatBy

Builds a slice with values returned by N calls of callback.

slice := lo.RepeatBy(0, func (i int) string {
    return strconv.FormatInt(int64(math.Pow(float64(i), 2)), 10)
})
// []string{}

slice := lo.RepeatBy(5, func(i int) string {
    return strconv.FormatInt(int64(math.Pow(float64(i), 2)), 10)
})
// []string{"0", "1", "4", "9", "16"}

[play]

KeyBy

Transforms a slice or an array of structs to a map based on a pivot callback.

m := lo.KeyBy([]string{"a", "aa", "aaa"}, func(str string) int {
    return len(str)
})
// map[int]string{1: "a", 2: "aa", 3: "aaa"}

type Character struct {
  dir  string
  code int
}
characters := []Character{
    {dir: "left", code: 97},
    {dir: "right", code: 100},
}
result := lo.KeyBy(characters, func(char Character) string {
    return string(rune(char.code))
})
//map[a:{dir:left code:97} d:{dir:right code:100}]

[play]

SliceToMap (alias: Associate)

Returns a map containing key-value pairs provided by transform function applied to elements of the given slice. If any of two pairs would have the same key the last one gets added to the map.

The order of keys in returned map is not specified and is not guaranteed to be the same from the original array.

in := []*foo{{baz: "apple", bar: 1}, {baz: "banana", bar: 2}}

aMap := lo.SliceToMap(in, func (f *foo) (string, int) {
    return f.baz, f.bar
})
// map[string][int]{ "apple":1, "banana":2 }

[play]

FilterSliceToMap

Returns a map containing key-value pairs provided by transform function applied to elements of the given slice.

If any of two pairs would have the same key the last one gets added to the map.

The order of keys in returned map is not specified and is not guaranteed to be the same from the original array.

The third return value of the transform function is a boolean that indicates whether the key-value pair should be included in the map.

list := []string{"a", "aa", "aaa"}

result := lo.FilterSliceToMap(list, func(str string) (string, int, bool) {
    return str, len(str), len(str) > 1
})
// map[string][int]{"aa":2 "aaa":3}
Keyify

Returns a map with each unique element of the slice as a key.

set := lo.Keyify([]int{1, 1, 2, 3, 4})
// map[int]struct{}{1:{}, 2:{}, 3:{}, 4:{}}
Drop

Drops n elements from the beginning of a slice or array.

l := lo.Drop([]int{0, 1, 2, 3, 4, 5}, 2)
// []int{2, 3, 4, 5}

[play]

DropRight

Drops n elements from the end of a slice or array.

l := lo.DropRight([]int{0, 1, 2, 3, 4, 5}, 2)
// []int{0, 1, 2, 3}

[play]

DropWhile

Drop elements from the beginning of a slice or array while the predicate returns true.

l := lo.DropWhile([]string{"a", "aa", "aaa", "aa", "aa"}, func(val string) bool {
    return len(val) <= 2
})
// []string{"aaa", "aa", "aa"}

[play]

DropRightWhile

Drop elements from the end of a slice or array while the predicate returns true.

l := lo.DropRightWhile([]string{"a", "aa", "aaa", "aa", "aa"}, func(val string) bool {
    return len(val) <= 2
})
// []string{"a", "aa", "aaa"}

[play]

DropByIndex

Drops elements from a slice or array by the index. A negative index will drop elements from the end of the slice.

l := lo.DropByIndex([]int{0, 1, 2, 3, 4, 5}, 2, 4, -1)
// []int{0, 1, 3}

[play]

Reject

The opposite of Filter, this method returns the elements of collection that predicate does not return truthy for.

odd := lo.Reject([]int{1, 2, 3, 4}, func(x int, _ int) bool {
    return x%2 == 0
})
// []int{1, 3}

[play]

RejectMap

The opposite of FilterMap, this method returns a slice which obtained after both filtering and mapping using the given callback function.

The callback function should return two values:

  • the result of the mapping operation and
  • whether the result element should be included or not.
items := lo.RejectMap([]int{1, 2, 3, 4}, func(x int, _ int) (int, bool) {
    return x*10, x%2 == 0
})
// []int{10, 30}
FilterReject

Mixes Filter and Reject, this method returns two slices, one for the elements of collection that predicate returns truthy for and one for the elements that predicate does not return truthy for.

kept, rejected := lo.FilterReject([]int{1, 2, 3, 4}, func(x int, _ int) bool {
    return x%2 == 0
})
// []int{2, 4}
// []int{1, 3}
Count

Counts the number of elements in the collection that compare equal to value.

count := lo.Count([]int{1, 5, 1}, 1)
// 2

[play]

CountBy

Counts the number of elements in the collection for which predicate is true.

count := lo.CountBy([]int{1, 5, 1}, func(i int) bool {
    return i < 4
})
// 2

[play]

CountValues

Counts the number of each element in the collection.

lo.CountValues([]int{})
// map[int]int{}

lo.CountValues([]int{1, 2})
// map[int]int{1: 1, 2: 1}

lo.CountValues([]int{1, 2, 2})
// map[int]int{1: 1, 2: 2}

lo.CountValues([]string{"foo", "bar", ""})
// map[string]int{"": 1, "foo": 1, "bar": 1}

lo.CountValues([]string{"foo", "bar", "bar"})
// map[string]int{"foo": 1, "bar": 2}

[play]

CountValuesBy

Counts the number of each element in the collection. It ss equivalent to chaining lo.Map and lo.CountValues.

isEven := func(v int) bool {
    return v%2==0
}

lo.CountValuesBy([]int{}, isEven)
// map[bool]int{}

lo.CountValuesBy([]int{1, 2}, isEven)
// map[bool]int{false: 1, true: 1}

lo.CountValuesBy([]int{1, 2, 2}, isEven)
// map[bool]int{false: 1, true: 2}

length := func(v string) int {
    return len(v)
}

lo.CountValuesBy([]string{"foo", "bar", ""}, length)
// map[int]int{0: 1, 3: 2}

lo.CountValuesBy([]string{"foo", "bar", "bar"}, length)
// map[int]int{3: 3}

[play]

Subset

Returns a copy of a slice from offset up to length elements. Like slice[start:start+length], but does not panic on overflow.

in := []int{0, 1, 2, 3, 4}

sub := lo.Subset(in, 2, 3)
// []int{2, 3, 4}

sub := lo.Subset(in, -4, 3)
// []int{1, 2, 3}

sub := lo.Subset(in, -2, math.MaxUint)
// []int{3, 4}

[play]

Slice

Returns a copy of a slice from start up to, but not including end. Like slice[start:end], but does not panic on overflow.

in := []int{0, 1, 2, 3, 4}

slice := lo.Slice(in, 0, 5)
// []int{0, 1, 2, 3, 4}

slice := lo.Slice(in, 2, 3)
// []int{2}

slice := lo.Slice(in, 2, 6)
// []int{2, 3, 4}

slice := lo.Slice(in, 4, 3)
// []int{}

[play]

Replace

Returns a copy of the slice with the first n non-overlapping instances of old replaced by new.

in := []int{0, 1, 0, 1, 2, 3, 0}

slice := lo.Replace(in, 0, 42, 1)
// []int{42, 1, 0, 1, 2, 3, 0}

slice := lo.Replace(in, -1, 42, 1)
// []int{0, 1, 0, 1, 2, 3, 0}

slice := lo.Replace(in, 0, 42, 2)
// []int{42, 1, 42, 1, 2, 3, 0}

slice := lo.Replace(in, 0, 42, -1)
// []int{42, 1, 42, 1, 2, 3, 42}

[play]

ReplaceAll

Returns a copy of the slice with all non-overlapping instances of old replaced by new.

in := []int{0, 1, 0, 1, 2, 3, 0}

slice := lo.ReplaceAll(in, 0, 42)
// []int{42, 1, 42, 1, 2, 3, 42}

slice := lo.ReplaceAll(in, -1, 42)
// []int{0, 1, 0, 1, 2, 3, 0}

[play]

Compact

Returns a slice of all non-zero elements.

in := []string{"", "foo", "", "bar", ""}

slice := lo.Compact(in)
// []string{"foo", "bar"}

[play]

IsSorted

Checks if a slice is sorted.

slice := lo.IsSorted([]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9})
// true

[play]

IsSortedByKey

Checks if a slice is sorted by iteratee.

slice := lo.IsSortedByKey([]string{"a", "bb", "ccc"}, func(s string) int {
    return len(s)
})
// true

[play]

Splice

Splice inserts multiple elements at index i. A negative index counts back from the end of the slice. The helper is protected against overflow errors.

result := lo.Splice([]string{"a", "b"}, 1, "1", "2")
// []string{"a", "1", "2", "b"}

// negative
result = lo.Splice([]string{"a", "b"}, -1, "1", "2")
// []string{"a", "1", "2", "b"}

// overflow
result = lo.Splice([]string{"a", "b"}, 42, "1", "2")
// []string{"a", "b", "1", "2"}

[play]

Keys

Creates a slice of the map keys.

Use the UniqKeys variant to deduplicate common keys.

keys := lo.Keys(map[string]int{"foo": 1, "bar": 2})
// []string{"foo", "bar"}

keys := lo.Keys(map[string]int{"foo": 1, "bar": 2}, map[string]int{"baz": 3})
// []string{"foo", "bar", "baz"}

keys := lo.Keys(map[string]int{"foo": 1, "bar": 2}, map[string]int{"bar": 3})
// []string{"foo", "bar", "bar"}

[play]

UniqKeys

Creates an array of unique map keys.

keys := lo.UniqKeys(map[string]int{"foo": 1, "bar": 2}, map[string]int{"baz": 3})
// []string{"foo", "bar", "baz"}

keys := lo.UniqKeys(map[string]int{"foo": 1, "bar": 2}, map[string]int{"bar": 3})
// []string{"foo", "bar"}

[play]

HasKey

Returns whether the given key exists.

exists := lo.HasKey(map[string]int{"foo": 1, "bar": 2}, "foo")
// true

exists := lo.HasKey(map[string]int{"foo": 1, "bar": 2}, "baz")
// false

[play]

Values

Creates an array of the map values.

Use the UniqValues variant to deduplicate common values.

values := lo.Values(map[string]int{"foo": 1, "bar": 2})
// []int{1, 2}

values := lo.Values(map[string]int{"foo": 1, "bar": 2}, map[string]int{"baz": 3})
// []int{1, 2, 3}

values := lo.Values(map[string]int{"foo": 1, "bar": 2}, map[string]int{"bar": 2})
// []int{1, 2, 2}

[play]

UniqValues

Creates an array of unique map values.

values := lo.UniqValues(map[string]int{"foo": 1, "bar": 2})
// []int{1, 2}

values := lo.UniqValues(map[string]int{"foo": 1, "bar": 2}, map[string]int{"baz": 3})
// []int{1, 2, 3}

values := lo.UniqValues(map[string]int{"foo": 1, "bar": 2}, map[string]int{"bar": 2})
// []int{1, 2}

[play]

ValueOr

Returns the value of the given key or the fallback value if the key is not present.

value := lo.ValueOr(map[string]int{"foo": 1, "bar": 2}, "foo", 42)
// 1

value := lo.ValueOr(map[string]int{"foo": 1, "bar": 2}, "baz", 42)
// 42

[play]

PickBy

Returns same map type filtered by given predicate.

m := lo.PickBy(map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(key string, value int) bool {
    return value%2 == 1
})
// map[string]int{"foo": 1, "baz": 3}

[play]

PickByKeys

Returns same map type filtered by given keys.

m := lo.PickByKeys(map[string]int{"foo": 1, "bar": 2, "baz": 3}, []string{"foo", "baz"})
// map[string]int{"foo": 1, "baz": 3}

[play]

PickByValues

Returns same map type filtered by given values.

m := lo.PickByValues(map[string]int{"foo": 1, "bar": 2, "baz": 3}, []int{1, 3})
// map[string]int{"foo": 1, "baz": 3}

[play]

OmitBy

Returns same map type filtered by given predicate.

m := lo.OmitBy(map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(key string, value int) bool {
    return value%2 == 1
})
// map[string]int{"bar": 2}

[play]

OmitByKeys

Returns same map type filtered by given keys.

m := lo.OmitByKeys(map[string]int{"foo": 1, "bar": 2, "baz": 3}, []string{"foo", "baz"})
// map[string]int{"bar": 2}

[play]

OmitByValues

Returns same map type filtered by given values.

m := lo.OmitByValues(map[string]int{"foo": 1, "bar": 2, "baz": 3}, []int{1, 3})
// map[string]int{"bar": 2}

[play]

Entries (alias: ToPairs)

Transforms a map into array of key/value pairs.

entries := lo.Entries(map[string]int{"foo": 1, "bar": 2})
// []lo.Entry[string, int]{
//     {
//         Key: "foo",
//         Value: 1,
//     },
//     {
//         Key: "bar",
//         Value: 2,
//     },
// }

[play]

FromEntries (alias: FromPairs)

Transforms an array of key/value pairs into a map.

m := lo.FromEntries([]lo.Entry[string, int]{
    {
        Key: "foo",
        Value: 1,
    },
    {
        Key: "bar",
        Value: 2,
    },
})
// map[string]int{"foo": 1, "bar": 2}

[play]

Invert

Creates a map composed of the inverted keys and values. If map contains duplicate values, subsequent values overwrite property assignments of previous values.

m1 := lo.Invert(map[string]int{"a": 1, "b": 2})
// map[int]string{1: "a", 2: "b"}

m2 := lo.Invert(map[string]int{"a": 1, "b": 2, "c": 1})
// map[int]string{1: "c", 2: "b"}

[play]

Assign

Merges multiple maps from left to right.

mergedMaps := lo.Assign(
    map[string]int{"a": 1, "b": 2},
    map[string]int{"b": 3, "c": 4},
)
// map[string]int{"a": 1, "b": 3, "c": 4}

[play]

ChunkEntries

Splits a map into an array of elements in groups of a length equal to its size. If the map cannot be split evenly, the final chunk will contain the remaining elements.

maps := lo.ChunkEntries(
    map[string]int{
        "a": 1,
        "b": 2,
        "c": 3,
        "d": 4,
        "e": 5,
    },
    3,
)
// []map[string]int{
//    {"a": 1, "b": 2, "c": 3},
//    {"d": 4, "e": 5},
// }

[play]

MapKeys

Manipulates a map keys and transforms it to a map of another type.

m2 := lo.MapKeys(map[int]int{1: 1, 2: 2, 3: 3, 4: 4}, func(_ int, v int) string {
    return strconv.FormatInt(int64(v), 10)
})
// map[string]int{"1": 1, "2": 2, "3": 3, "4": 4}

[play]

MapValues

Manipulates a map values and transforms it to a map of another type.

m1 := map[int]int64{1: 1, 2: 2, 3: 3}

m2 := lo.MapValues(m1, func(x int64, _ int) string {
    return strconv.FormatInt(x, 10)
})
// map[int]string{1: "1", 2: "2", 3: "3"}

[play]

MapEntries

Manipulates a map entries and transforms it to a map of another type.

in := map[string]int{"foo": 1, "bar": 2}

out := lo.MapEntries(in, func(k string, v int) (int, string) {
    return v,k
})
// map[int]string{1: "foo", 2: "bar"}

[play]

MapToSlice

Transforms a map into a slice based on specific iteratee.

m := map[int]int64{1: 4, 2: 5, 3: 6}

s := lo.MapToSlice(m, func(k int, v int64) string {
    return fmt.Sprintf("%d_%d", k, v)
})
// []string{"1_4", "2_5", "3_6"}

[play]

FilterMapToSlice

Transforms a map into a slice based on specific iteratee. The iteratee returns a value and a boolean. If the boolean is true, the value is added to the result slice.

If the boolean is false, the value is not added to the result slice. The order of the keys in the input map is not specified and the order of the keys in the output slice is not guaranteed.

kv := map[int]int64{1: 1, 2: 2, 3: 3, 4: 4}

result := lo.FilterMapToSlice(kv, func(k int, v int64) (string, bool) {
    return fmt.Sprintf("%d_%d", k, v), k%2 == 0
})
// []{"2_2", "4_4"}
Range / RangeFrom / RangeWithSteps

Creates an array of numbers (positive and/or negative) progressing from start up to, but not including end.

result := lo.Range(4)
// [0, 1, 2, 3]

result := lo.Range(-4)
// [0, -1, -2, -3]

result := lo.RangeFrom(1, 5)
// [1, 2, 3, 4, 5]

result := lo.RangeFrom[float64](1.0, 5)
// [1.0, 2.0, 3.0, 4.0, 5.0]

result := lo.RangeWithSteps(0, 20, 5)
// [0, 5, 10, 15]

result := lo.RangeWithSteps[float32](-1.0, -4.0, -1.0)
// [-1.0, -2.0, -3.0]

result := lo.RangeWithSteps(1, 4, -1)
// []

result := lo.Range(0)
// []

[play]

Clamp

Clamps number within the inclusive lower and upper bounds.

r1 := lo.Clamp(0, -10, 10)
// 0

r2 := lo.Clamp(-42, -10, 10)
// -10

r3 := lo.Clamp(42, -10, 10)
// 10

[play]

Sum

Sums the values in a collection.

If collection is empty 0 is returned.

list := []int{1, 2, 3, 4, 5}
sum := lo.Sum(list)
// 15

[play]

SumBy

Summarizes the values in a collection using the given return value from the iteration function.

If collection is empty 0 is returned.

strings := []string{"foo", "bar"}
sum := lo.SumBy(strings, func(item string) int {
    return len(item)
})
// 6
Product

Calculates the product of the values in a collection.

If collection is empty 0 is returned.

list := []int{1, 2, 3, 4, 5}
product := lo.Product(list)
// 120

[play]

ProductBy

Calculates the product of the values in a collection using the given return value from the iteration function.

If collection is empty 0 is returned.

strings := []string{"foo", "bar"}
product := lo.ProductBy(strings, func(item string) int {
    return len(item)
})
// 9

[play]

Mean

Calculates the mean of a collection of numbers.

If collection is empty 0 is returned.

mean := lo.Mean([]int{2, 3, 4, 5})
// 3

mean := lo.Mean([]float64{2, 3, 4, 5})
// 3.5

mean := lo.Mean([]float64{})
// 0
MeanBy

Calculates the mean of a collection of numbers using the given return value from the iteration function.

If collection is empty 0 is returned.

list := []string{"aa", "bbb", "cccc", "ddddd"}
mapper := func(item string) float64 {
    return float64(len(item))
}

mean := lo.MeanBy(list, mapper)
// 3.5

mean := lo.MeanBy([]float64{}, mapper)
// 0
RandomString

Returns a random string of the specified length and made of the specified charset.

str := lo.RandomString(5, lo.LettersCharset)
// example: "eIGbt"

[play]

Substring

Return part of a string.

sub := lo.Substring("hello", 2, 3)
// "llo"

sub := lo.Substring("hello", -4, 3)
// "ell"

sub := lo.Substring("hello", -2, math.MaxUint)
// "lo"

[play]

ChunkString

Returns an array of strings split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements.

lo.ChunkString("123456", 2)
// []string{"12", "34", "56"}

lo.ChunkString("1234567", 2)
// []string{"12", "34", "56", "7"}

lo.ChunkString("", 2)
// []string{""}

lo.ChunkString("1", 2)
// []string{"1"}

[play]

RuneLength

An alias to utf8.RuneCountInString which returns the number of runes in string.

sub := lo.RuneLength("hellô")
// 5

sub := len("hellô")
// 6

[play]

PascalCase

Converts string to pascal case.

str := lo.PascalCase("hello_world")
// HelloWorld

[play]

CamelCase

Converts string to camel case.

str := lo.CamelCase("hello_world")
// helloWorld

[play]

KebabCase

Converts string to kebab case.

str := lo.KebabCase("helloWorld")
// hello-world

[play]

SnakeCase

Converts string to snake case.

str := lo.SnakeCase("HelloWorld")
// hello_world

[play]

Words

Splits string into an array of its words.

str := lo.Words("helloWorld")
// []string{"hello", "world"}

[play]

Capitalize

Converts the first character of string to upper case and the remaining to lower case.

str := lo.Capitalize("heLLO")
// Hello
Ellipsis

Trims and truncates a string to a specified length and appends an ellipsis if truncated.

str := lo.Ellipsis("  Lorem Ipsum  ", 5)
// Lo...

str := lo.Ellipsis("Lorem Ipsum", 100)
// Lorem Ipsum

str := lo.Ellipsis("Lorem Ipsum", 3)
// ...
T2 -> T9

Creates a tuple from a list of values.

tuple1 := lo.T2("x", 1)
// Tuple2[string, int]{A: "x", B: 1}

func example() (string, int) { return "y", 2 }
tuple2 := lo.T2(example())
// Tuple2[string, int]{A: "y", B: 2}

[play]

Unpack2 -> Unpack9

Returns values contained in tuple.

r1, r2 := lo.Unpack2(lo.Tuple2[string, int]{"a", 1})
// "a", 1

Unpack is also available as a method of TupleX.

tuple2 := lo.T2("a", 1)
a, b := tuple2.Unpack()
// "a", 1

[play]

Zip2 -> Zip9

Zip creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on.

When collections have different size, the Tuple attributes are filled with zero value.

tuples := lo.Zip2([]string{"a", "b"}, []int{1, 2})
// []Tuple2[string, int]{{A: "a", B: 1}, {A: "b", B: 2}}

[play]

ZipBy2 -> ZipBy9

ZipBy creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on.

When collections have different size, the Tuple attributes are filled with zero value.

items := lo.ZipBy2([]string{"a", "b"}, []int{1, 2}, func(a string, b int) string {
    return fmt.Sprintf("%s-%d", a, b)
})
// []string{"a-1", "b-2"}
Unzip2 -> Unzip9

Unzip accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration.

a, b := lo.Unzip2([]Tuple2[string, int]{{A: "a", B: 1}, {A: "b", B: 2}})
// []string{"a", "b"}
// []int{1, 2}

[play]

UnzipBy2 -> UnzipBy9

UnzipBy2 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

a, b := lo.UnzipBy2([]string{"hello", "john", "doe"}, func(str string) (string, int) {
    return str, len(str)
})
// []string{"hello", "john", "doe"}
// []int{5, 4, 3}
CrossJoin2 -> CrossJoin9

Combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

result := lo.CrossJoin2([]string{"hello", "john", "doe"}, []int{1, 2})
// lo.Tuple2{"hello", 1}
// lo.Tuple2{"hello", 2}
// lo.Tuple2{"john", 1}
// lo.Tuple2{"john", 2}
// lo.Tuple2{"doe", 1}
// lo.Tuple2{"doe", 2}
CrossJoinBy2 -> CrossJoinBy9

Combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

result := lo.CrossJoinBy2([]string{"hello", "john", "doe"}, []int{1, 2}, func(a A, b B) string {
    return fmt.Sprintf("%s - %d", a, b)
})
// "hello - 1"
// "hello - 2"
// "john - 1"
// "john - 2"
// "doe - 1"
// "doe - 2"
Duration

Returns the time taken to execute a function.

duration := lo.Duration(func() {
    // very long job
})
// 3s
Duration0 -> Duration10

Returns the time taken to execute a function.

duration := lo.Duration0(func() {
    // very long job
})
// 3s

err, duration := lo.Duration1(func() error {
    // very long job
    return fmt.Errorf("an error")
})
// an error
// 3s

str, nbr, err, duration := lo.Duration3(func() (string, int, error) {
    // very long job
    return "hello", 42, nil
})
// hello
// 42
// nil
// 3s
ChannelDispatcher

Distributes messages from input channels into N child channels. Close events are propagated to children.

Underlying channels can have a fixed buffer capacity or be unbuffered when cap is 0.

ch := make(chan int, 42)
for i := 0; i <= 10; i++ {
    ch <- i
}

children := lo.ChannelDispatcher(ch, 5, 10, DispatchingStrategyRoundRobin[int])
// []<-chan int{...}

consumer := func(c <-chan int) {
    for {
        msg, ok := <-c
        if !ok {
            println("closed")

            break
        }

        println(msg)
    }
}

for i := range children {
    go consumer(children[i])
}

Many distributions strategies are available:

Some strategies bring fallback, in order to favor non-blocking behaviors. See implementations.

For custom strategies, just implement the lo.DispatchingStrategy prototype:

type DispatchingStrategy[T any] func(message T, messageIndex uint64, channels []<-chan T) int

Eg:

type Message struct {
    TenantID uuid.UUID
}

func hash(id uuid.UUID) int {
    h := fnv.New32a()
    h.Write([]byte(id.String()))
    return int(h.Sum32())
}

// Routes messages per TenantID.
customStrategy := func(message string, messageIndex uint64, channels []<-chan string) int {
    destination := hash(message) % len(channels)

    // check if channel is full
    if len(channels[destination]) < cap(channels[destination]) {
        return destination
    }

    // fallback when child channel is full
    return utils.DispatchingStrategyRoundRobin(message, uint64(destination), channels)
}

children := lo.ChannelDispatcher(ch, 5, 10, customStrategy)
...
SliceToChannel

Returns a read-only channels of collection elements. Channel is closed after last element. Channel capacity can be customized.

list := []int{1, 2, 3, 4, 5}

for v := range lo.SliceToChannel(2, list) {
    println(v)
}
// prints 1, then 2, then 3, then 4, then 5
ChannelToSlice

Returns a slice built from channels items. Blocks until channel closes.

list := []int{1, 2, 3, 4, 5}
ch := lo.SliceToChannel(2, list)

items := ChannelToSlice(ch)
// []int{1, 2, 3, 4, 5}
Generator

Implements the generator design pattern. Channel is closed after last element. Channel capacity can be customized.

generator := func(yield func(int)) {
    yield(1)
    yield(2)
    yield(3)
}

for v := range lo.Generator(2, generator) {
    println(v)
}
// prints 1, then 2, then 3
Buffer

Creates a slice of n elements from a channel. Returns the slice, the slice length, the read time and the channel status (opened/closed).

ch := lo.SliceToChannel(2, []int{1, 2, 3, 4, 5})

items1, length1, duration1, ok1 := lo.Buffer(ch, 3)
// []int{1, 2, 3}, 3, 0s, true
items2, length2, duration2, ok2 := lo.Buffer(ch, 3)
// []int{4, 5}, 2, 0s, false

Example: RabbitMQ consumer 👇

ch := readFromQueue()

for {
    // read 1k items
    items, length, _, ok := lo.Buffer(ch, 1000)

    // do batching stuff

    if !ok {
        break
    }
}
BufferWithContext

Creates a slice of n elements from a channel, with timeout. Returns the slice, the slice length, the read time and the channel status (opened/closed).

ctx, cancel := context.WithCancel(context.TODO())
go func() {
    ch <- 0
    time.Sleep(10*time.Millisecond)
    ch <- 1
    time.Sleep(10*time.Millisecond)
    ch <- 2
    time.Sleep(10*time.Millisecond)
    ch <- 3
    time.Sleep(10*time.Millisecond)
    ch <- 4
    time.Sleep(10*time.Millisecond)
    cancel()
}()

items1, length1, duration1, ok1 := lo.BufferWithContext(ctx, ch, 3)
// []int{0, 1, 2}, 3, 20ms, true
items2, length2, duration2, ok2 := lo.BufferWithContext(ctx, ch, 3)
// []int{3, 4}, 2, 30ms, false
BufferWithTimeout

Creates a slice of n elements from a channel, with timeout. Returns the slice, the slice length, the read time and the channel status (opened/closed).

generator := func(yield func(int)) {
    for i := 0; i < 5; i++ {
        yield(i)
        time.Sleep(35*time.Millisecond)
    }
}

ch := lo.Generator(0, generator)

items1, length1, duration1, ok1 := lo.BufferWithTimeout(ch, 3, 100*time.Millisecond)
// []int{1, 2}, 2, 100ms, true
items2, length2, duration2, ok2 := lo.BufferWithTimeout(ch, 3, 100*time.Millisecond)
// []int{3, 4, 5}, 3, 75ms, true
items3, length3, duration2, ok3 := lo.BufferWithTimeout(ch, 3, 100*time.Millisecond)
// []int{}, 0, 10ms, false

Example: RabbitMQ consumer 👇

ch := readFromQueue()

for {
    // read 1k items
    // wait up to 1 second
    items, length, _, ok := lo.BufferWithTimeout(ch, 1000, 1*time.Second)

    // do batching stuff

    if !ok {
        break
    }
}

Example: Multithreaded RabbitMQ consumer 👇

ch := readFromQueue()

// 5 workers
// prefetch 1k messages per worker
children := lo.ChannelDispatcher(ch, 5, 1000, lo.DispatchingStrategyFirst[int])

consumer := func(c <-chan int) {
    for {
        // read 1k items
        // wait up to 1 second
        items, length, _, ok := lo.BufferWithTimeout(ch, 1000, 1*time.Second)

        // do batching stuff

        if !ok {
            break
        }
    }
}

for i := range children {
    go consumer(children[i])
}
FanIn

Merge messages from multiple input channels into a single buffered channel. Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.

stream1 := make(chan int, 42)
stream2 := make(chan int, 42)
stream3 := make(chan int, 42)

all := lo.FanIn(100, stream1, stream2, stream3)
// <-chan int
FanOut

Broadcasts all the upstream messages to multiple downstream channels. When upstream channel reach EOF, downstream channels close. If any downstream channels is full, broadcasting is paused.

stream := make(chan int, 42)

all := lo.FanOut(5, 100, stream)
// [5]<-chan int
Contains

Returns true if an element is present in a collection.

present := lo.Contains([]int{0, 1, 2, 3, 4, 5}, 5)
// true
ContainsBy

Returns true if the predicate function returns true.

present := lo.ContainsBy([]int{0, 1, 2, 3, 4, 5}, func(x int) bool {
    return x == 3
})
// true
Every

Returns true if all elements of a subset are contained into a collection or if the subset is empty.

ok := lo.Every([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// true

ok := lo.Every([]int{0, 1, 2, 3, 4, 5}, []int{0, 6})
// false
EveryBy

Returns true if the predicate returns true for all elements in the collection or if the collection is empty.

b := EveryBy([]int{1, 2, 3, 4}, func(x int) bool {
    return x < 5
})
// true
Some

Returns true if at least 1 element of a subset is contained into a collection. If the subset is empty Some returns false.

ok := lo.Some([]int{0, 1, 2, 3, 4, 5}, []int{0, 6})
// true

ok := lo.Some([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6})
// false
SomeBy

Returns true if the predicate returns true for any of the elements in the collection. If the collection is empty SomeBy returns false.

b := SomeBy([]int{1, 2, 3, 4}, func(x int) bool {
    return x < 3
})
// true
None

Returns true if no element of a subset are contained into a collection or if the subset is empty.

b := None([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// false
b := None([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6})
// true
NoneBy

Returns true if the predicate returns true for none of the elements in the collection or if the collection is empty.

b := NoneBy([]int{1, 2, 3, 4}, func(x int) bool {
    return x < 0
})
// true
Intersect

Returns the intersection between two collections.

result1 := lo.Intersect([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// []int{0, 2}

result2 := lo.Intersect([]int{0, 1, 2, 3, 4, 5}, []int{0, 6})
// []int{0}

result3 := lo.Intersect([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6})
// []int{}
Difference

Returns the difference between two collections.

  • The first value is the collection of element absent of list2.
  • The second value is the collection of element absent of list1.
left, right := lo.Difference([]int{0, 1, 2, 3, 4, 5}, []int{0, 2, 6})
// []int{1, 3, 4, 5}, []int{6}

left, right := lo.Difference([]int{0, 1, 2, 3, 4, 5}, []int{0, 1, 2, 3, 4, 5})
// []int{}, []int{}
Union

Returns all distinct elements from given collections. Result will not change the order of elements relatively.

union := lo.Union([]int{0, 1, 2, 3, 4, 5}, []int{0, 2}, []int{0, 10})
// []int{0, 1, 2, 3, 4, 5, 10}
Without

Returns slice excluding all given values.

subset := lo.Without([]int{0, 2, 10}, 2)
// []int{0, 10}

subset := lo.Without([]int{0, 2, 10}, 0, 1, 2, 3, 4, 5)
// []int{10}
WithoutBy

Filters a slice by excluding elements whose extracted keys match any in the exclude list.

It returns a new slice containing only the elements whose keys are not in the exclude list.

type struct User {
    ID int
    Name string
}

// original users
users := []User{
    {ID: 1, Name: "Alice"},
    {ID: 2, Name: "Bob"},
    {ID: 3, Name: "Charlie"},
}

// extract function to get the user ID
getID := func(user User) int {
    return user.ID
}

// exclude users with IDs 2 and 3
excludedIDs := []int{2, 3}

// filtering users
filteredUsers := lo.WithoutBy(users, getID, excludedIDs...)
// []User[{ID: 1, Name: "Alice"}]
WithoutEmpty

Returns slice excluding zero values.

subset := lo.WithoutEmpty([]int{0, 2, 10})
// []int{2, 10}
WithoutNth

Returns slice excluding nth value.

subset := lo.WithoutNth([]int{-2, -1, 0, 1, 2}, 3, -42, 1)
// []int{-2, 0, 2}
ElementsMatch

Returns true if lists contain the same set of elements (including empty set).

If there are duplicate elements, the number of appearances of each of them in both lists should match.

The order of elements is not checked.

b := lo.ElementsMatch([]int{1, 1, 2}, []int{2, 1, 1})
// true
ElementsMatchBy

Returns true if lists contain the same set of elements' keys (including empty set).

If there are duplicate keys, the number of appearances of each of them in both lists should match.

The order of elements is not checked.

b := lo.ElementsMatchBy(
    []someType{a, b},
    []someType{b, a},
    func(item someType) string { return item.ID() },
)
// true
IndexOf

Returns the index at which the first occurrence of a value is found in an array or return -1 if the value cannot be found.

found := lo.IndexOf([]int{0, 1, 2, 1, 2, 3}, 2)
// 2

notFound := lo.IndexOf([]int{0, 1, 2, 1, 2, 3}, 6)
// -1
LastIndexOf

Returns the index at which the last occurrence of a value is found in an array or return -1 if the value cannot be found.

found := lo.LastIndexOf([]int{0, 1, 2, 1, 2, 3}, 2)
// 4

notFound := lo.LastIndexOf([]int{0, 1, 2, 1, 2, 3}, 6)
// -1
Find

Search an element in a slice based on a predicate. It returns element and true if element was found.

str, ok := lo.Find([]string{"a", "b", "c", "d"}, func(i string) bool {
    return i == "b"
})
// "b", true

str, ok := lo.Find([]string{"foobar"}, func(i string) bool {
    return i == "b"
})
// "", false
FindIndexOf

FindIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found.

str, index, ok := lo.FindIndexOf([]string{"a", "b", "a", "b"}, func(i string) bool {
    return i == "b"
})
// "b", 1, true

str, index, ok := lo.FindIndexOf([]string{"foobar"}, func(i string) bool {
    return i == "b"
})
// "", -1, false
FindLastIndexOf

FindLastIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found.

str, index, ok := lo.FindLastIndexOf([]string{"a", "b", "a", "b"}, func(i string) bool {
    return i == "b"
})
// "b", 4, true

str, index, ok := lo.FindLastIndexOf([]string{"foobar"}, func(i string) bool {
    return i == "b"
})
// "", -1, false
FindOrElse

Search an element in a slice based on a predicate. It returns the element if found or a given fallback value otherwise.

str := lo.FindOrElse([]string{"a", "b", "c", "d"}, "x", func(i string) bool {
    return i == "b"
})
// "b"

str := lo.FindOrElse([]string{"foobar"}, "x", func(i string) bool {
    return i == "b"
})
// "x"
FindKey

Returns the key of the first value matching.

result1, ok1 := lo.FindKey(map[string]int{"foo": 1, "bar": 2, "baz": 3}, 2)
// "bar", true

result2, ok2 := lo.FindKey(map[string]int{"foo": 1, "bar": 2, "baz": 3}, 42)
// "", false

type test struct {
    foobar string
}
result3, ok3 := lo.FindKey(map[string]test{"foo": test{"foo"}, "bar": test{"bar"}, "baz": test{"baz"}}, test{"foo"})
// "foo", true
FindKeyBy

Returns the key of the first element predicate returns truthy for.

result1, ok1 := lo.FindKeyBy(map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(k string, v int) bool {
    return k == "foo"
})
// "foo", true

result2, ok2 := lo.FindKeyBy(map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(k string, v int) bool {
    return false
})
// "", false
FindUniques

Returns a slice with all the unique elements of the collection. The order of result values is determined by the order they occur in the array.

uniqueValues := lo.FindUniques([]int{1, 2, 2, 1, 2, 3})
// []int{3}
FindUniquesBy

Returns a slice with all the unique elements of the collection. The order of result values is determined by the order they occur in the array. It accepts iteratee which is invoked for each element in array to generate the criterion by which uniqueness is computed.

uniqueValues := lo.FindUniquesBy([]int{3, 4, 5, 6, 7}, func(i int) int {
    return i%3
})
// []int{5}
FindDuplicates

Returns a slice with the first occurrence of each duplicated elements of the collection. The order of result values is determined by the order they occur in the array.

duplicatedValues := lo.FindDuplicates([]int{1, 2, 2, 1, 2, 3})
// []int{1, 2}
FindDuplicatesBy

Returns a slice with the first occurrence of each duplicated elements of the collection. The order of result values is determined by the order they occur in the array. It accepts iteratee which is invoked for each element in array to generate the criterion by which uniqueness is computed.

duplicatedValues := lo.FindDuplicatesBy([]int{3, 4, 5, 6, 7}, func(i int) int {
    return i%3
})
// []int{3, 4}
Min

Search the minimum value of a collection.

Returns zero value when the collection is empty.

min := lo.Min([]int{1, 2, 3})
// 1

min := lo.Min([]int{})
// 0

min := lo.Min([]time.Duration{time.Second, time.Hour})
// 1s
MinIndex

Search the minimum value of a collection and the index of the minimum value.

Returns (zero value, -1) when the collection is empty.

min, index := lo.MinIndex([]int{1, 2, 3})
// 1, 0

min, index := lo.MinIndex([]int{})
// 0, -1

min, index := lo.MinIndex([]time.Duration{time.Second, time.Hour})
// 1s, 0
MinBy

Search the minimum value of a collection using the given comparison function.

If several values of the collection are equal to the smallest value, returns the first such value.

Returns zero value when the collection is empty.

min := lo.MinBy([]string{"s1", "string2", "s3"}, func(item string, min string) bool {
    return len(item) < len(min)
})
// "s1"

min := lo.MinBy([]string{}, func(item string, min string) bool {
    return len(item) < len(min)
})
// ""
MinIndexBy

Search the minimum value of a collection using the given comparison function and the index of the minimum value.

If several values of the collection are equal to the smallest value, returns the first such value.

Returns (zero value, -1) when the collection is empty.

min, index := lo.MinIndexBy([]string{"s1", "string2", "s3"}, func(item string, min string) bool {
    return len(item) < len(min)
})
// "s1", 0

min, index := lo.MinIndexBy([]string{}, func(item string, min string) bool {
    return len(item) < len(min)
})
// "", -1
Earliest

Search the minimum time.Time of a collection.

Returns zero value when the collection is empty.

earliest := lo.Earliest(time.Now(), time.Time{})
// 0001-01-01 00:00:00 +0000 UTC
EarliestBy

Search the minimum time.Time of a collection using the given iteratee function.

Returns zero value when the collection is empty.

type foo struct {
    bar time.Time
}

earliest := lo.EarliestBy([]foo{{time.Now()}, {}}, func(i foo) time.Time {
    return i.bar
})
// {bar:{2023-04-01 01:02:03 +0000 UTC}}
Max

Search the maximum value of a collection.

Returns zero value when the collection is empty.

max := lo.Max([]int{1, 2, 3})
// 3

max := lo.Max([]int{})
// 0

max := lo.Max([]time.Duration{time.Second, time.Hour})
// 1h
MaxIndex

Search the maximum value of a collection and the index of the maximum value.

Returns (zero value, -1) when the collection is empty.

max, index := lo.MaxIndex([]int{1, 2, 3})
// 3, 2

max, index := lo.MaxIndex([]int{})
// 0, -1

max, index := lo.MaxIndex([]time.Duration{time.Second, time.Hour})
// 1h, 1
MaxBy

Search the maximum value of a collection using the given comparison function.

If several values of the collection are equal to the greatest value, returns the first such value.

Returns zero value when the collection is empty.

max := lo.MaxBy([]string{"string1", "s2", "string3"}, func(item string, max string) bool {
    return len(item) > len(max)
})
// "string1"

max := lo.MaxBy([]string{}, func(item string, max string) bool {
    return len(item) > len(max)
})
// ""
MaxIndexBy

Search the maximum value of a collection using the given comparison function and the index of the maximum value.

If several values of the collection are equal to the greatest value, returns the first such value.

Returns (zero value, -1) when the collection is empty.

max, index := lo.MaxIndexBy([]string{"string1", "s2", "string3"}, func(item string, max string) bool {
    return len(item) > len(max)
})
// "string1", 0

max, index := lo.MaxIndexBy([]string{}, func(item string, max string) bool {
    return len(item) > len(max)
})
// "", -1
Latest

Search the maximum time.Time of a collection.

Returns zero value when the collection is empty.

latest := lo.Latest([]time.Time{time.Now(), time.Time{}})
// 2023-04-01 01:02:03 +0000 UTC
LatestBy

Search the maximum time.Time of a collection using the given iteratee function.

Returns zero value when the collection is empty.

type foo struct {
    bar time.Time
}

latest := lo.LatestBy([]foo{{time.Now()}, {}}, func(i foo) time.Time {
    return i.bar
})
// {bar:{2023-04-01 01:02:03 +0000 UTC}}
First

Returns the first element of a collection and check for availability of the first element.

first, ok := lo.First([]int{1, 2, 3})
// 1, true

first, ok := lo.First([]int{})
// 0, false
FirstOrEmpty

Returns the first element of a collection or zero value if empty.

first := lo.FirstOrEmpty([]int{1, 2, 3})
// 1

first := lo.FirstOrEmpty([]int{})
// 0
FirstOr

Returns the first element of a collection or the fallback value if empty.

first := lo.FirstOr([]int{1, 2, 3}, 245)
// 1

first := lo.FirstOr([]int{}, 31)
// 31
Last

Returns the last element of a collection or error if empty.

last, ok := lo.Last([]int{1, 2, 3})
// 3
// true

last, ok := lo.Last([]int{})
// 0
// false
LastOrEmpty

Returns the first element of a collection or zero value if empty.

last := lo.LastOrEmpty([]int{1, 2, 3})
// 3

last := lo.LastOrEmpty([]int{})
// 0
LastOr

Returns the first element of a collection or the fallback value if empty.

last := lo.LastOr([]int{1, 2, 3}, 245)
// 3

last := lo.LastOr([]int{}, 31)
// 31
Nth

Returns the element at index nth of collection. If nth is negative, the nth element from the end is returned. An error is returned when nth is out of slice bounds.

nth, err := lo.Nth([]int{0, 1, 2, 3}, 2)
// 2

nth, err := lo.Nth([]int{0, 1, 2, 3}, -2)
// 2
NthOr

Returns the element at index nth of the collection. If nth is negative, it returns the nth element from the end. If nth is out of slice bounds, it returns the provided fallback value

nth := lo.NthOr([]int{10, 20, 30, 40, 50}, 2, -1)
// 30

nth := lo.NthOr([]int{10, 20, 30, 40, 50}, -1, -1)
// 50

nth := lo.NthOr([]int{10, 20, 30, 40, 50}, 5, -1)
// -1 (fallback value)
NthOrEmpty

Returns the element at index nth of the collection. If nth is negative, it returns the nth element from the end. If nth is out of slice bounds, it returns the zero value for the element type (e.g., 0 for integers, "" for strings, etc).

nth := lo.NthOrEmpty([]int{10, 20, 30, 40, 50}, 2)
// 30

nth := lo.NthOrEmpty([]int{10, 20, 30, 40, 50}, -1)
// 50

nth := lo.NthOrEmpty([]int{10, 20, 30, 40, 50}, 5)
// 0 (zero value for int)

nth := lo.NthOrEmpty([]string{"apple", "banana", "cherry"}, 2)
// "cherry"

nth := lo.NthOrEmpty([]string{"apple", "banana", "cherry"}, 5)
// "" (zero value for string)
Sample

Returns a random item from collection.

lo.Sample([]string{"a", "b", "c"})
// a random string from []string{"a", "b", "c"}

lo.Sample([]string{})
// ""
SampleBy

Returns a random item from collection, using a given random integer generator.

import "math/rand"

r := rand.New(rand.NewSource(42))
lo.SampleBy([]string{"a", "b", "c"}, r.Intn)
// a random string from []string{"a", "b", "c"}, using a seeded random generator

lo.SampleBy([]string{}, r.Intn)
// ""
Samples

Returns N random unique items from collection.

lo.Samples([]string{"a", "b", "c"}, 3)
// []string{"a", "b", "c"} in random order
SamplesBy

Returns N random unique items from collection, using a given random integer generator.

r := rand.New(rand.NewSource(42))
lo.SamplesBy([]string{"a", "b", "c"}, 3, r.Intn)
// []string{"a", "b", "c"} in random order, using a seeded random generator
Ternary

A 1 line if/else statement.

result := lo.Ternary(true, "a", "b")
// "a"

result := lo.Ternary(false, "a", "b")
// "b"

Take care to avoid dereferencing potentially nil pointers in your A/B expressions, because they are both evaluated. See TernaryF to avoid this problem.

[play]

TernaryF

A 1 line if/else statement whose options are functions.

result := lo.TernaryF(true, func() string { return "a" }, func() string { return "b" })
// "a"

result := lo.TernaryF(false, func() string { return "a" }, func() string { return "b" })
// "b"

Useful to avoid nil-pointer dereferencing in initializations, or avoid running unnecessary code

var s *string

someStr := TernaryF(s == nil, func() string { return uuid.New().String() }, func() string { return *s })
// ef782193-c30c-4e2e-a7ae-f8ab5e125e02

[play]

If / ElseIf / Else
result := lo.If(true, 1).
    ElseIf(false, 2).
    Else(3)
// 1

result := lo.If(false, 1).
    ElseIf(true, 2).
    Else(3)
// 2

result := lo.If(false, 1).
    ElseIf(false, 2).
    Else(3)
// 3

Using callbacks:

result := lo.IfF(true, func () int {
        return 1
    }).
    ElseIfF(false, func () int {
        return 2
    }).
    ElseF(func () int {
        return 3
    })
// 1

Mixed:

result := lo.IfF(true, func () int {
        return 1
    }).
    Else(42)
// 1

[play]

Switch / Case / Default
result := lo.Switch(1).
    Case(1, "1").
    Case(2, "2").
    Default("3")
// "1"

result := lo.Switch(2).
    Case(1, "1").
    Case(2, "2").
    Default("3")
// "2"

result := lo.Switch(42).
    Case(1, "1").
    Case(2, "2").
    Default("3")
// "3"

Using callbacks:

result := lo.Switch(1).
    CaseF(1, func() string {
        return "1"
    }).
    CaseF(2, func() string {
        return "2"
    }).
    DefaultF(func() string {
        return "3"
    })
// "1"

Mixed:

result := lo.Switch(1).
    CaseF(1, func() string {
        return "1"
    }).
    Default("42")
// "1"

[play]

IsNil

Checks if a value is nil or if it's a reference type with a nil underlying value.

var x int
lo.IsNil(x)
// false

var k struct{}
lo.IsNil(k)
// false

var i *int
lo.IsNil(i)
// true

var ifaceWithNilValue any = (*string)(nil)
lo.IsNil(ifaceWithNilValue)
// true
ifaceWithNilValue == nil
// false
IsNotNil

Checks if a value is not nil or if it's not a reference type with a nil underlying value.

var x int
lo.IsNotNil(x)
// true

var k struct{}
lo.IsNotNil(k)
// true

var i *int
lo.IsNotNil(i)
// false

var ifaceWithNilValue any = (*string)(nil)
lo.IsNotNil(ifaceWithNilValue)
// false
ifaceWithNilValue == nil
// true
ToPtr

Returns a pointer copy of the value.

ptr := lo.ToPtr("hello world")
// *string{"hello world"}
Nil

Returns a nil pointer of type.

ptr := lo.Nil[float64]()
// nil
EmptyableToPtr

Returns a pointer copy of value if it's nonzero. Otherwise, returns nil pointer.

ptr := lo.EmptyableToPtr(nil)
// nil

ptr := lo.EmptyableToPtr("")
// nil

ptr := lo.EmptyableToPtr([]int{})
// *[]int{}

ptr := lo.EmptyableToPtr("hello world")
// *string{"hello world"}
FromPtr

Returns the pointer value or empty.

str := "hello world"
value := lo.FromPtr(&str)
// "hello world"

value := lo.FromPtr(nil)
// ""
FromPtrOr

Returns the pointer value or the fallback value.

str := "hello world"
value := lo.FromPtrOr(&str, "empty")
// "hello world"

value := lo.FromPtrOr(nil, "empty")
// "empty"
ToSlicePtr

Returns a slice of pointer copy of value.

ptr := lo.ToSlicePtr([]string{"hello", "world"})
// []*string{"hello", "world"}
FromSlicePtr

Returns a slice with the pointer values. Returns a zero value in case of a nil pointer element.

str1 := "hello"
str2 := "world"

ptr := lo.FromSlicePtr[string]([]*string{&str1, &str2, nil})
// []string{"hello", "world", ""}

ptr := lo.Compact(
    lo.FromSlicePtr[string]([]*string{&str1, &str2, nil}),
)
// []string{"hello", "world"}
FromSlicePtrOr

Returns a slice with the pointer values or the fallback value.

str1 := "hello"
str2 := "world"

ptr := lo.FromSlicePtrOr([]*string{&str1, nil, &str2}, "fallback value")
// []string{"hello", "fallback value", "world"}

[play]

ToAnySlice

Returns a slice with all elements mapped to any type.

elements := lo.ToAnySlice([]int{1, 5, 1})
// []any{1, 5, 1}
FromAnySlice

Returns an any slice with all elements mapped to a type. Returns false in case of type conversion failure.

elements, ok := lo.FromAnySlice([]any{"foobar", 42})
// []string{}, false

elements, ok := lo.FromAnySlice([]any{"foobar", "42"})
// []string{"foobar", "42"}, true
Empty

Returns the zero value.

lo.Empty[int]()
// 0
lo.Empty[string]()
// ""
lo.Empty[bool]()
// false
IsEmpty

Returns true if argument is a zero value.

lo.IsEmpty(0)
// true
lo.IsEmpty(42)
// false

lo.IsEmpty("")
// true
lo.IsEmpty("foobar")
// false

type test struct {
    foobar string
}

lo.IsEmpty(test{foobar: ""})
// true
lo.IsEmpty(test{foobar: "foobar"})
// false
IsNotEmpty

Returns true if argument is a zero value.

lo.IsNotEmpty(0)
// false
lo.IsNotEmpty(42)
// true

lo.IsNotEmpty("")
// false
lo.IsNotEmpty("foobar")
// true

type test struct {
    foobar string
}

lo.IsNotEmpty(test{foobar: ""})
// false
lo.IsNotEmpty(test{foobar: "foobar"})
// true
Coalesce

Returns the first non-empty arguments. Arguments must be comparable.

result, ok := lo.Coalesce(0, 1, 2, 3)
// 1 true

result, ok := lo.Coalesce("")
// "" false

var nilStr *string
str := "foobar"
result, ok := lo.Coalesce(nil, nilStr, &str)
// &"foobar" true
CoalesceOrEmpty

Returns the first non-empty arguments. Arguments must be comparable.

result := lo.CoalesceOrEmpty(0, 1, 2, 3)
// 1

result := lo.CoalesceOrEmpty("")
// ""

var nilStr *string
str := "foobar"
result := lo.CoalesceOrEmpty(nil, nilStr, &str)
// &"foobar"
CoalesceSlice

Returns the first non-zero slice.

result, ok := lo.CoalesceSlice([]int{1, 2, 3}, []int{4, 5, 6})
// [1, 2, 3]
// true

result, ok := lo.CoalesceSlice(nil, []int{})
// []
// true

result, ok := lo.CoalesceSlice([]int(nil))
// []
// false
CoalesceSliceOrEmpty

Returns the first non-zero slice.

result := lo.CoalesceSliceOrEmpty([]int{1, 2, 3}, []int{4, 5, 6})
// [1, 2, 3]

result := lo.CoalesceSliceOrEmpty(nil, []int{})
// []
CoalesceMap

Returns the first non-zero map.

result, ok := lo.CoalesceMap(map[string]int{"1": 1, "2": 2, "3": 3}, map[string]int{"4": 4, "5": 5, "6": 6})
// {"1": 1, "2": 2, "3": 3}
// true

result, ok := lo.CoalesceMap(nil, map[string]int{})
// {}
// true

result, ok := lo.CoalesceMap(map[string]int(nil))
// {}
// false
CoalesceMapOrEmpty

Returns the first non-zero map.

result := lo.CoalesceMapOrEmpty(map[string]int{"1": 1, "2": 2, "3": 3}, map[string]int{"4": 4, "5": 5, "6": 6})
// {"1": 1, "2": 2, "3": 3}

result := lo.CoalesceMapOrEmpty(nil, map[string]int{})
// {}
Partial

Returns new function that, when called, has its first argument set to the provided value.

add := func(x, y int) int { return x + y }
f := lo.Partial(add, 5)

f(10)
// 15

f(42)
// 47
Partial2 -> Partial5

Returns new function that, when called, has its first argument set to the provided value.

add := func(x, y, z int) int { return x + y + z }
f := lo.Partial2(add, 42)

f(10, 5)
// 57

f(42, -4)
// 80
Attempt

Invokes a function N times until it returns valid output. Returns either the caught error or nil.

When the first argument is less than 1, the function runs until a successful response is returned.

iter, err := lo.Attempt(42, func(i int) error {
    if i == 5 {
        return nil
    }

    return fmt.Errorf("failed")
})
// 6
// nil

iter, err := lo.Attempt(2, func(i int) error {
    if i == 5 {
        return nil
    }

    return fmt.Errorf("failed")
})
// 2
// error "failed"

iter, err := lo.Attempt(0, func(i int) error {
    if i < 42 {
        return fmt.Errorf("failed")
    }

    return nil
})
// 43
// nil

For more advanced retry strategies (delay, exponential backoff...), please take a look on cenkalti/backoff.

[play]

AttemptWithDelay

Invokes a function N times until it returns valid output, with a pause between each call. Returns either the caught error or nil.

When the first argument is less than 1, the function runs until a successful response is returned.

iter, duration, err := lo.AttemptWithDelay(5, 2*time.Second, func(i int, duration time.Duration) error {
    if i == 2 {
        return nil
    }

    return fmt.Errorf("failed")
})
// 3
// ~ 4 seconds
// nil

For more advanced retry strategies (delay, exponential backoff...), please take a look on cenkalti/backoff.

[play]

AttemptWhile

Invokes a function N times until it returns valid output. Returns either the caught error or nil, along with a bool value to determine whether the function should be invoked again. It will terminate the invoke immediately if the second return value is false.

When the first argument is less than 1, the function runs until a successful response is returned.

count1, err1 := lo.AttemptWhile(5, func(i int) (error, bool) {
    err := doMockedHTTPRequest(i)
    if err != nil {
        if errors.Is(err, ErrBadRequest) { // lets assume ErrBadRequest is a critical error that needs to terminate the invoke
            return err, false // flag the second return value as false to terminate the invoke
        }

        return err, true
    }

    return nil, false
})

For more advanced retry strategies (delay, exponential backoff...), please take a look on cenkalti/backoff.

[play]

AttemptWhileWithDelay

Invokes a function N times until it returns valid output, with a pause between each call. Returns either the caught error or nil, along with a bool value to determine whether the function should be invoked again. It will terminate the invoke immediately if the second return value is false.

When the first argument is less than 1, the function runs until a successful response is returned.

count1, time1, err1 := lo.AttemptWhileWithDelay(5, time.Millisecond, func(i int, d time.Duration) (error, bool) {
    err := doMockedHTTPRequest(i)
    if err != nil {
        if errors.Is(err, ErrBadRequest) { // lets assume ErrBadRequest is a critical error that needs to terminate the invoke
            return err, false // flag the second return value as false to terminate the invoke
        }

        return err, true
    }

    return nil, false
})

For more advanced retry strategies (delay, exponential backoff...), please take a look on cenkalti/backoff.

[play]

Debounce

NewDebounce creates a debounced instance that delays invoking functions given until after wait milliseconds have elapsed, until cancel is called.

f := func() {
    println("Called once after 100ms when debounce stopped invoking!")
}

debounce, cancel := lo.NewDebounce(100 * time.Millisecond, f)
for j := 0; j < 10; j++ {
    debounce()
}

time.Sleep(1 * time.Second)
cancel()

[play]

DebounceBy

NewDebounceBy creates a debounced instance for each distinct key, that delays invoking functions given until after wait milliseconds have elapsed, until cancel is called.

f := func(key string, count int) {
    println(key + ": Called once after 100ms when debounce stopped invoking!")
}

debounce, cancel := lo.NewDebounceBy(100 * time.Millisecond, f)
for j := 0; j < 10; j++ {
    debounce("first key")
    debounce("second key")
}

time.Sleep(1 * time.Second)
cancel("first key")
cancel("second key")

[play]

Throttle

Creates a throttled instance that invokes given functions only once in every interval.

This returns 2 functions, First one is throttled function and Second one is a function to reset interval.

f := func() {
	println("Called once in every 100ms")
}

throttle, reset := lo.NewThrottle(100 * time.Millisecond, f)

for j := 0; j < 10; j++ {
	throttle()
	time.Sleep(30 * time.Millisecond)
}

reset()
throttle()

NewThrottleWithCount is NewThrottle with count limit, throttled function will be invoked count times in every interval.

f := func() {
	println("Called three times in every 100ms")
}

throttle, reset := lo.NewThrottleWithCount(100 * time.Millisecond, f)

for j := 0; j < 10; j++ {
	throttle()
	time.Sleep(30 * time.Millisecond)
}

reset()
throttle()

NewThrottleBy and NewThrottleByWithCount are NewThrottle with sharding key, throttled function will be invoked count times in every interval.

f := func(key string) {
	println(key, "Called three times in every 100ms")
}

throttle, reset := lo.NewThrottleByWithCount(100 * time.Millisecond, f)

for j := 0; j < 10; j++ {
	throttle("foo")
	time.Sleep(30 * time.Millisecond)
}

reset()
throttle()
Synchronize

Wraps the underlying callback in a mutex. It receives an optional mutex.

s := lo.Synchronize()

for i := 0; i < 10; i++ {
    go s.Do(func () {
        println("will be called sequentially")
    })
}

It is equivalent to:

mu := sync.Mutex{}

func foobar() {
    mu.Lock()
    defer mu.Unlock()

    // ...
}
Async

Executes a function in a goroutine and returns the result in a channel.

ch := lo.Async(func() error { time.Sleep(10 * time.Second); return nil })
// chan error (nil)
Async{0->6}

Executes a function in a goroutine and returns the result in a channel. For function with multiple return values, the results will be returned as a tuple inside the channel. For function without return, struct{} will be returned in the channel.

ch := lo.Async0(func() { time.Sleep(10 * time.Second) })
// chan struct{}

ch := lo.Async1(func() int {
  time.Sleep(10 * time.Second);
  return 42
})
// chan int (42)

ch := lo.Async2(func() (int, string) {
  time.Sleep(10 * time.Second);
  return 42, "Hello"
})
// chan lo.Tuple2[int, string] ({42, "Hello"})
Transaction

Implements a Saga pattern.

transaction := NewTransaction().
    Then(
        func(state int) (int, error) {
            fmt.Println("step 1")
            return state + 10, nil
        },
        func(state int) int {
            fmt.Println("rollback 1")
            return state - 10
        },
    ).
    Then(
        func(state int) (int, error) {
            fmt.Println("step 2")
            return state + 15, nil
        },
        func(state int) int {
            fmt.Println("rollback 2")
            return state - 15
        },
    ).
    Then(
        func(state int) (int, error) {
            fmt.Println("step 3")

            if true {
                return state, fmt.Errorf("error")
            }

            return state + 42, nil
        },
        func(state int) int {
            fmt.Println("rollback 3")
            return state - 42
        },
    )

_, _ = transaction.Process(-5)

// Output:
// step 1
// step 2
// step 3
// rollback 2
// rollback 1
WaitFor

Runs periodically until a condition is validated.

alwaysTrue := func(i int) bool { return true }
alwaysFalse := func(i int) bool { return false }
laterTrue := func(i int) bool {
    return i > 5
}

iterations, duration, ok := lo.WaitFor(alwaysTrue, 10*time.Millisecond, 2 * time.Millisecond)
// 1
// 1ms
// true

iterations, duration, ok := lo.WaitFor(alwaysFalse, 10*time.Millisecond, time.Millisecond)
// 10
// 10ms
// false

iterations, duration, ok := lo.WaitFor(laterTrue, 10*time.Millisecond, time.Millisecond)
// 7
// 7ms
// true

iterations, duration, ok := lo.WaitFor(laterTrue, 10*time.Millisecond, 5*time.Millisecond)
// 2
// 10ms
// false
WaitForWithContext

Runs periodically until a condition is validated or context is invalid.

The condition receives also the context, so it can invalidate the process in the condition checker

ctx := context.Background()

alwaysTrue := func(_ context.Context, i int) bool { return true }
alwaysFalse := func(_ context.Context, i int) bool { return false }
laterTrue := func(_ context.Context, i int) bool {
    return i >= 5
}

iterations, duration, ok := lo.WaitForWithContext(ctx, alwaysTrue, 10*time.Millisecond, 2 * time.Millisecond)
// 1
// 1ms
// true

iterations, duration, ok := lo.WaitForWithContext(ctx, alwaysFalse, 10*time.Millisecond, time.Millisecond)
// 10
// 10ms
// false

iterations, duration, ok := lo.WaitForWithContext(ctx, laterTrue, 10*time.Millisecond, time.Millisecond)
// 5
// 5ms
// true

iterations, duration, ok := lo.WaitForWithContext(ctx, laterTrue, 10*time.Millisecond, 5*time.Millisecond)
// 2
// 10ms
// false

expiringCtx, cancel := context.WithTimeout(ctx, 5*time.Millisecond)
iterations, duration, ok := lo.WaitForWithContext(expiringCtx, alwaysFalse, 100*time.Millisecond, time.Millisecond)
// 5
// 5.1ms
// false
Validate

Helper function that creates an error when a condition is not met.

slice := []string{"a"}
val := lo.Validate(len(slice) == 0, "Slice should be empty but contains %v", slice)
// error("Slice should be empty but contains [a]")

slice := []string{}
val := lo.Validate(len(slice) == 0, "Slice should be empty but contains %v", slice)
// nil

[play]

Must

Wraps a function call to panics if second argument is error or false, returns the value otherwise.

val := lo.Must(time.Parse("2006-01-02", "2022-01-15"))
// 2022-01-15

val := lo.Must(time.Parse("2006-01-02", "bad-value"))
// panics

[play]

Must{0->6}

Must* has the same behavior as Must, but returns multiple values.

func example0() (error)
func example1() (int, error)
func example2() (int, string, error)
func example3() (int, string, time.Date, error)
func example4() (int, string, time.Date, bool, error)
func example5() (int, string, time.Date, bool, float64, error)
func example6() (int, string, time.Date, bool, float64, byte, error)

lo.Must0(example0())
val1 := lo.Must1(example1())    // alias to Must
val1, val2 := lo.Must2(example2())
val1, val2, val3 := lo.Must3(example3())
val1, val2, val3, val4 := lo.Must4(example4())
val1, val2, val3, val4, val5 := lo.Must5(example5())
val1, val2, val3, val4, val5, val6 := lo.Must6(example6())

You can wrap functions like func (...) (..., ok bool).

// math.Signbit(float64) bool
lo.Must0(math.Signbit(v))

// bytes.Cut([]byte,[]byte) ([]byte, []byte, bool)
before, after := lo.Must2(bytes.Cut(s, sep))

You can give context to the panic message by adding some printf-like arguments.

val, ok := lo.Find(myString, func(i string) bool {
    return i == requiredChar
})
lo.Must0(ok, "'%s' must always contain '%s'", myString, requiredChar)

list := []int{0, 1, 2}
item := 5
lo.Must0(lo.Contains(list, item), "'%s' must always contain '%s'", list, item)
...

[play]

Try

Calls the function and returns false in case of error and panic.

ok := lo.Try(func() error {
    panic("error")
    return nil
})
// false

ok := lo.Try(func() error {
    return nil
})
// true

ok := lo.Try(func() error {
    return fmt.Errorf("error")
})
// false

[play]

Try{0->6}

The same behavior as Try, but the callback returns 2 variables.

ok := lo.Try2(func() (string, error) {
    panic("error")
    return "", nil
})
// false

[play]

TryOr

Calls the function and return a default value in case of error and on panic.

str, ok := lo.TryOr(func() (string, error) {
    panic("error")
    return "hello", nil
}, "world")
// world
// false

str, ok := lo.TryOr(func() error {
    return "hello", nil
}, "world")
// hello
// true

str, ok := lo.TryOr(func() error {
    return "hello", fmt.Errorf("error")
}, "world")
// world
// false

[play]

TryOr{0->6}

The same behavior as TryOr, but the callback returns X variables.

str, nbr, ok := lo.TryOr2(func() (string, int, error) {
    panic("error")
    return "hello", 42, nil
}, "world", 21)
// world
// 21
// false

[play]

TryWithErrorValue

The same behavior as Try, but also returns the value passed to panic.

err, ok := lo.TryWithErrorValue(func() error {
    panic("error")
    return nil
})
// "error", false

[play]

TryCatch

The same behavior as Try, but calls the catch function in case of error.

caught := false

ok := lo.TryCatch(func() error {
    panic("error")
    return nil
}, func() {
    caught = true
})
// false
// caught == true

[play]

TryCatchWithErrorValue

The same behavior as TryWithErrorValue, but calls the catch function in case of error.

caught := false

ok := lo.TryCatchWithErrorValue(func() error {
    panic("error")
    return nil
}, func(val any) {
    caught = val == "error"
})
// false
// caught == true

[play]

ErrorsAs

A shortcut for:

err := doSomething()

var rateLimitErr *RateLimitError
if ok := errors.As(err, &rateLimitErr); ok {
    // retry later
}

1 line lo helper:

err := doSomething()

if rateLimitErr, ok := lo.ErrorsAs[*RateLimitError](err); ok {
    // retry later
}

[play]

🛩 Benchmark

We executed a simple benchmark with a dead-simple lo.Map loop:

See the full implementation here.

_ = lo.Map[int64](arr, func(x int64, i int) string {
    return strconv.FormatInt(x, 10)
})

Result:

Here is a comparison between lo.Map, lop.Map, go-funk library and a simple Go for loop.

$ go test -benchmem -bench ./...
goos: linux
goarch: amd64
pkg: github.com/big-cabbage/lo
cpu: Intel(R) Core(TM) i5-7267U CPU @ 3.10GHz
cpu: Intel(R) Core(TM) i7 CPU         920  @ 2.67GHz
BenchmarkMap/lo.Map-8         	       8	 132728237 ns/op	39998945 B/op	 1000002 allocs/op
BenchmarkMap/lop.Map-8        	       2	 503947830 ns/op	119999956 B/op	 3000007 allocs/op
BenchmarkMap/reflect-8        	       2	 826400560 ns/op	170326512 B/op	 4000042 allocs/op
BenchmarkMap/for-8            	       9	 126252954 ns/op	39998674 B/op	 1000001 allocs/op
PASS
ok  	github.com/big-cabbage/lo	6.657s
  • lo.Map is way faster (x7) than go-funk, a reflection-based Map implementation.
  • lo.Map has the same allocation profile as for.
  • lo.Map is 4% slower than for.
  • lop.Map is slower than lo.Map because it implies more memory allocation and locks. lop.Map will be useful for long-running callbacks, such as i/o bound processing.
  • for beats other implementations for memory and CPU.

🤝 Contributing

Don't hesitate ;)

Helper naming: helpers must be self-explanatory and respect standards (other languages, libraries...). Feel free to suggest many names in your contributions.

With Docker
docker-compose run --rm dev
Without Docker
# Install some dev dependencies
make tools

# Run tests
make test
# or
make watch-test

👤 Contributors

Contributors

💫 Show your support

Give a ⭐️ if this project helped you!

GitHub Sponsors

📝 License

Copyright © 2022 Samuel Berthe.

This project is under MIT license.

Documentation

Overview

Example (IfElse_Else)
result1 := If(true, 1).
	ElseIf(false, 2).
	Else(3)

result2 := If(false, 1).
	ElseIf(true, 2).
	Else(3)

result3 := If(false, 1).
	ElseIf(false, 2).
	Else(3)

result4 := IfF(true, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

result5 := IfF(false, func() int { return 1 }).
	ElseIfF(true, func() int { return 2 }).
	ElseF(func() int { return 3 })

result6 := IfF(false, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (IfElse_ElseF)
result1 := If(true, 1).
	ElseIf(false, 2).
	Else(3)

result2 := If(false, 1).
	ElseIf(true, 2).
	Else(3)

result3 := If(false, 1).
	ElseIf(false, 2).
	Else(3)

result4 := IfF(true, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

result5 := IfF(false, func() int { return 1 }).
	ElseIfF(true, func() int { return 2 }).
	ElseF(func() int { return 3 })

result6 := IfF(false, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (IfElse_ElseIf)
result1 := If(true, 1).
	ElseIf(false, 2).
	Else(3)

result2 := If(false, 1).
	ElseIf(true, 2).
	Else(3)

result3 := If(false, 1).
	ElseIf(false, 2).
	Else(3)

result4 := IfF(true, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

result5 := IfF(false, func() int { return 1 }).
	ElseIfF(true, func() int { return 2 }).
	ElseF(func() int { return 3 })

result6 := IfF(false, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (IfElse_ElseIfF)
result1 := If(true, 1).
	ElseIf(false, 2).
	Else(3)

result2 := If(false, 1).
	ElseIf(true, 2).
	Else(3)

result3 := If(false, 1).
	ElseIf(false, 2).
	Else(3)

result4 := IfF(true, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

result5 := IfF(false, func() int { return 1 }).
	ElseIfF(true, func() int { return 2 }).
	ElseF(func() int { return 3 })

result6 := IfF(false, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (SwitchCase_Case)
result1 := Switch[int, string](1).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result2 := Switch[int, string](2).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result3 := Switch[int, string](42).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result4 := Switch[int, string](1).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result5 := Switch[int, string](2).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result6 := Switch[int, string](42).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (SwitchCase_CaseF)
result1 := Switch[int, string](1).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result2 := Switch[int, string](2).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result3 := Switch[int, string](42).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result4 := Switch[int, string](1).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result5 := Switch[int, string](2).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result6 := Switch[int, string](42).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (SwitchCase_Default)
result1 := Switch[int, string](1).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result2 := Switch[int, string](2).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result3 := Switch[int, string](42).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result4 := Switch[int, string](1).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result5 := Switch[int, string](2).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result6 := Switch[int, string](42).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3
Example (SwitchCase_DefaultF)
result1 := Switch[int, string](1).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result2 := Switch[int, string](2).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result3 := Switch[int, string](42).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result4 := Switch[int, string](1).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result5 := Switch[int, string](2).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result6 := Switch[int, string](42).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3

Index

Examples

Constants

This section is empty.

Variables

View Source
var (
	LowerCaseLettersCharset = []rune("abcdefghijklmnopqrstuvwxyz")
	UpperCaseLettersCharset = []rune("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
	LettersCharset          = append(LowerCaseLettersCharset, UpperCaseLettersCharset...)
	NumbersCharset          = []rune("0123456789")
	AlphanumericCharset     = append(LettersCharset, NumbersCharset...)
	SpecialCharset          = []rune("!@#$%^&*()_+-=[]{}|;':\",./<>?")
	AllCharset              = append(AlphanumericCharset, SpecialCharset...)
)

Functions

func All

func All[T any](collection []T, predicate func(item T) bool) bool

All returns true if all elements of the slice satisfy the predicate.

func Any

func Any[T any](collection []T, predicate func(item T) bool) bool

Any returns true if at least one element of the slice satisfies the predicate.

func Assign

func Assign[K comparable, V any, Map ~map[K]V](maps ...Map) Map

Assign merges multiple maps from left to right. Play: https://go.dev/play/p/VhwfJOyxf5o

Example
result := Assign(
	map[string]int{"a": 1, "b": 2},
	map[string]int{"b": 3, "c": 4},
)

fmt.Printf("%v %v %v %v", len(result), result["a"], result["b"], result["c"])
Output:

3 1 3 4

func Associate

func Associate[T any, K comparable, V any](collection []T, transform func(item T) (K, V)) map[K]V

Associate returns a map containing key-value pairs provided by transform function applied to elements of the given slice. If any of two pairs would have the same key the last one gets added to the map. The order of keys in returned map is not specified and is not guaranteed to be the same from the original array. Play: https://go.dev/play/p/WHa2CfMO3Lr

func Async

func Async[A any](f func() A) <-chan A

Async executes a function in a goroutine and returns the result in a channel.

func Async0

func Async0(f func()) <-chan struct{}

Async0 executes a function in a goroutine and returns a channel set once the function finishes.

func Async1

func Async1[A any](f func() A) <-chan A

Async1 is an alias to Async.

func Async2

func Async2[A, B any](f func() (A, B)) <-chan Tuple2[A, B]

Async2 has the same behavior as Async, but returns the 2 results as a tuple inside the channel.

func Async3

func Async3[A, B, C any](f func() (A, B, C)) <-chan Tuple3[A, B, C]

Async3 has the same behavior as Async, but returns the 3 results as a tuple inside the channel.

func Async4

func Async4[A, B, C, D any](f func() (A, B, C, D)) <-chan Tuple4[A, B, C, D]

Async4 has the same behavior as Async, but returns the 4 results as a tuple inside the channel.

func Async5

func Async5[A, B, C, D, E any](f func() (A, B, C, D, E)) <-chan Tuple5[A, B, C, D, E]

Async5 has the same behavior as Async, but returns the 5 results as a tuple inside the channel.

func Async6

func Async6[A, B, C, D, E, F any](f func() (A, B, C, D, E, F)) <-chan Tuple6[A, B, C, D, E, F]

Async6 has the same behavior as Async, but returns the 6 results as a tuple inside the channel.

func Attempt

func Attempt(maxIteration int, f func(index int) error) (int, error)

Attempt invokes a function N times until it returns valid output. Returns either the caught error or nil. When the first argument is less than `1`, the function runs until a successful response is returned. Play: https://go.dev/play/p/3ggJZ2ZKcMj

Example
count1, err1 := Attempt(2, func(i int) error {
	if i == 0 {
		return fmt.Errorf("error")
	}

	return nil
})

count2, err2 := Attempt(2, func(i int) error {
	if i < 10 {
		return fmt.Errorf("error")
	}

	return nil
})

fmt.Printf("%v %v\n", count1, err1)
fmt.Printf("%v %v\n", count2, err2)
Output:

2 <nil>
2 error

func AttemptWhile

func AttemptWhile(maxIteration int, f func(int) (error, bool)) (int, error)

AttemptWhile invokes a function N times until it returns valid output. Returns either the caught error or nil, along with a bool value to determine whether the function should be invoked again. It will terminate the invoke immediately if the second return value is false. When the first argument is less than `1`, the function runs until a successful response is returned.

func AttemptWhileWithDelay

func AttemptWhileWithDelay(maxIteration int, delay time.Duration, f func(int, time.Duration) (error, bool)) (int, time.Duration, error)

AttemptWhileWithDelay invokes a function N times until it returns valid output, with a pause between each call. Returns either the caught error or nil, along with a bool value to determine whether the function should be invoked again. It will terminate the invoke immediately if the second return value is false. When the first argument is less than `1`, the function runs until a successful response is returned.

func AttemptWithDelay

func AttemptWithDelay(maxIteration int, delay time.Duration, f func(index int, duration time.Duration) error) (int, time.Duration, error)

AttemptWithDelay invokes a function N times until it returns valid output, with a pause between each call. Returns either the caught error or nil. When the first argument is less than `1`, the function runs until a successful response is returned. Play: https://go.dev/play/p/tVs6CygC7m1

Example
count1, time1, err1 := AttemptWithDelay(2, time.Millisecond, func(i int, _ time.Duration) error {
	if i == 0 {
		return fmt.Errorf("error")
	}

	return nil
})

count2, time2, err2 := AttemptWithDelay(2, time.Millisecond, func(i int, _ time.Duration) error {
	if i < 10 {
		return fmt.Errorf("error")
	}

	return nil
})

fmt.Printf("%v %v %v\n", count1, time1.Truncate(time.Millisecond), err1)
fmt.Printf("%v %v %v\n", count2, time2.Truncate(time.Millisecond), err2)
Output:

2 1ms <nil>
2 1ms error

func Batch deprecated

func Batch[T any](ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool)

Batch creates a slice of n elements from a channel. Returns the slice and the slice length.

Deprecated: Use Buffer instead.

func BatchWithTimeout deprecated

func BatchWithTimeout[T any](ch <-chan T, size int, timeout time.Duration) (collection []T, length int, readTime time.Duration, ok bool)

BatchWithTimeout creates a slice of n elements from a channel, with timeout. Returns the slice and the slice length.

Deprecated: Use BufferWithTimeout instead.

func Buffer

func Buffer[T any](ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool)

Buffer creates a slice of n elements from a channel. Returns the slice and the slice length. @TODO: we should probably provide an helper that reuse the same buffer.

func BufferWithContext

func BufferWithContext[T any](ctx context.Context, ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool)

BufferWithContext creates a slice of n elements from a channel, with context. Returns the slice and the slice length. @TODO: we should probably provide an helper that reuse the same buffer.

func BufferWithTimeout

func BufferWithTimeout[T any](ch <-chan T, size int, timeout time.Duration) (collection []T, length int, readTime time.Duration, ok bool)

BufferWithTimeout creates a slice of n elements from a channel, with timeout. Returns the slice and the slice length.

func CamelCase

func CamelCase(str string) string

CamelCase converts string to camel case.

func Capitalize

func Capitalize(str string) string

Capitalize converts the first character of string to upper case and the remaining to lower case.

func ChannelDispatcher

func ChannelDispatcher[T any](stream <-chan T, count int, channelBufferCap int, strategy DispatchingStrategy[T]) []<-chan T

ChannelDispatcher distributes messages from input channels into N child channels. Close events are propagated to children. Underlying channels can have a fixed buffer capacity or be unbuffered when cap is 0.

func ChannelMerge deprecated

func ChannelMerge[T any](channelBufferCap int, upstreams ...<-chan T) <-chan T

ChannelMerge collects messages from multiple input channels into a single buffered channel. Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.

Deprecated: Use FanIn instead.

func ChannelToSlice

func ChannelToSlice[T any](ch <-chan T) []T

ChannelToSlice returns a slice built from channels items. Blocks until channel closes.

func Chunk

func Chunk[T any, Slice ~[]T](collection Slice, size int) []Slice

Chunk returns an array of elements split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements. Play: https://go.dev/play/p/EeKl0AuTehH

Example
list := []int{0, 1, 2, 3, 4}

result := Chunk(list, 2)

for _, item := range result {
	fmt.Printf("%v\n", item)
}
Output:

[0 1]
[2 3]
[4]

func ChunkEntries

func ChunkEntries[K comparable, V any](m map[K]V, size int) []map[K]V

ChunkEntries splits a map into an array of elements in groups of a length equal to its size. If the map cannot be split evenly, the final chunk will contain the remaining elements. Play: https://go.dev/play/p/X_YQL6mmoD-

Example
result := ChunkEntries(
	map[string]int{
		"a": 1,
		"b": 2,
		"c": 3,
		"d": 4,
		"e": 5,
	},
	3,
)

for i := range result {
	fmt.Printf("%d\n", len(result[i]))
}
Output:

3
2

func ChunkString

func ChunkString[T ~string](str T, size int) []T

ChunkString returns an array of strings split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements. Play: https://go.dev/play/p/__FLTuJVz54

Example
result1 := ChunkString("123456", 2)
result2 := ChunkString("1234567", 2)
result3 := ChunkString("", 2)
result4 := ChunkString("1", 2)

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
Output:

[12 34 56]
[12 34 56 7]
[]
[1]

func Clamp

func Clamp[T constraints.Ordered](value T, min T, max T) T

Clamp clamps number within the inclusive lower and upper bounds. Play: https://go.dev/play/p/RU4lJNC2hlI

Example
result1 := Clamp(0, -10, 10)
result2 := Clamp(-42, -10, 10)
result3 := Clamp(42, -10, 10)

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
Output:

0
-10
10

func Coalesce

func Coalesce[T comparable](values ...T) (result T, ok bool)

Coalesce returns the first non-empty arguments. Arguments must be comparable.

func CoalesceMap

func CoalesceMap[K comparable, V any](v ...map[K]V) (map[K]V, bool)

CoalesceMap returns the first non-zero map.

func CoalesceMapOrEmpty

func CoalesceMapOrEmpty[K comparable, V any](v ...map[K]V) map[K]V

CoalesceMapOrEmpty returns the first non-zero map.

func CoalesceOrEmpty

func CoalesceOrEmpty[T comparable](v ...T) T

CoalesceOrEmpty returns the first non-empty arguments. Arguments must be comparable.

func CoalesceSlice

func CoalesceSlice[T any](v ...[]T) ([]T, bool)

CoalesceSlice returns the first non-zero slice.

func CoalesceSliceOrEmpty

func CoalesceSliceOrEmpty[T any](v ...[]T) []T

CoalesceSliceOrEmpty returns the first non-zero slice.

func Compact

func Compact[T comparable, Slice ~[]T](collection Slice) Slice

Compact returns a slice of all non-zero elements. Play: https://go.dev/play/p/tXiy-iK6PAc

func Contains

func Contains[T comparable](collection []T, element T) bool

Contains returns true if an element is present in a collection.

func ContainsBy

func ContainsBy[T any](collection []T, predicate func(item T) bool) bool

ContainsBy returns true if predicate function return true.

func Count

func Count[T comparable](collection []T, value T) (count int)

Count counts the number of elements in the collection that compare equal to value. Play: https://go.dev/play/p/Y3FlK54yveC

Example
list := []int{0, 1, 2, 3, 4, 5, 0, 1, 2, 3}

result := Count(list, 2)

fmt.Printf("%v", result)
Output:

2

func CountBy

func CountBy[T any](collection []T, predicate func(item T) bool) (count int)

CountBy counts the number of elements in the collection for which predicate is true. Play: https://go.dev/play/p/ByQbNYQQi4X

Example
list := []int{0, 1, 2, 3, 4, 5, 0, 1, 2, 3}

result := CountBy(list, func(i int) bool {
	return i < 4
})

fmt.Printf("%v", result)
Output:

8

func CountValues

func CountValues[T comparable](collection []T) map[T]int

CountValues counts the number of each element in the collection. Play: https://go.dev/play/p/-p-PyLT4dfy

Example
result1 := CountValues([]int{})
result2 := CountValues([]int{1, 2})
result3 := CountValues([]int{1, 2, 2})
result4 := CountValues([]string{"foo", "bar", ""})
result5 := CountValues([]string{"foo", "bar", "bar"})

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
Output:

map[]
map[1:1 2:1]
map[1:1 2:2]
map[:1 bar:1 foo:1]
map[bar:2 foo:1]

func CountValuesBy

func CountValuesBy[T any, U comparable](collection []T, mapper func(item T) U) map[U]int

CountValuesBy counts the number of each element return from mapper function. Is equivalent to chaining lo.Map and lo.CountValues. Play: https://go.dev/play/p/2U0dG1SnOmS

Example
isEven := func(v int) bool {
	return v%2 == 0
}

result1 := CountValuesBy([]int{}, isEven)
result2 := CountValuesBy([]int{1, 2}, isEven)
result3 := CountValuesBy([]int{1, 2, 2}, isEven)

length := func(v string) int {
	return len(v)
}

result4 := CountValuesBy([]string{"foo", "bar", ""}, length)
result5 := CountValuesBy([]string{"foo", "bar", "bar"}, length)

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
Output:

map[]
map[false:1 true:1]
map[false:1 true:2]
map[0:1 3:2]
map[3:3]

func CrossJoinBy2

func CrossJoinBy2[A, B, Out any](listA []A, listB []B, project func(a A, b B) Out) []Out

CrossJoinBy2 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy2([]string{"a", "b"}, []int{1, 2, 3, 4}, func(a string, b int) string {
	return fmt.Sprintf("%v-%v", a, b)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1
a-2
a-3
a-4
b-1
b-2
b-3
b-4

func CrossJoinBy3

func CrossJoinBy3[A, B, C, Out any](listA []A, listB []B, listC []C, project func(a A, b B, c C) Out) []Out

CrossJoinBy3 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy3([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, func(a string, b int, c bool) string {
	return fmt.Sprintf("%v-%v-%v", a, b, c)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true
a-1-false
a-2-true
a-2-false
a-3-true
a-3-false
a-4-true
a-4-false
b-1-true
b-1-false
b-2-true
b-2-false
b-3-true
b-3-false
b-4-true
b-4-false

func CrossJoinBy4

func CrossJoinBy4[A, B, C, D, Out any](listA []A, listB []B, listC []C, listD []D, project func(a A, b B, c C, d D) Out) []Out

CrossJoinBy4 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy4([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, func(a string, b int, c bool, d foo) string {
	return fmt.Sprintf("%v-%v-%v-%v", a, b, c, d)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true-{bar}
a-1-false-{bar}
a-2-true-{bar}
a-2-false-{bar}
a-3-true-{bar}
a-3-false-{bar}
a-4-true-{bar}
a-4-false-{bar}
b-1-true-{bar}
b-1-false-{bar}
b-2-true-{bar}
b-2-false-{bar}
b-3-true-{bar}
b-3-false-{bar}
b-4-true-{bar}
b-4-false-{bar}

func CrossJoinBy5

func CrossJoinBy5[A, B, C, D, E, Out any](listA []A, listB []B, listC []C, listD []D, listE []E, project func(a A, b B, c C, d D, e E) Out) []Out

CrossJoinBy5 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy5([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, func(a string, b int, c bool, d foo, e float64) string {
	return fmt.Sprintf("%v-%v-%v-%v-%v", a, b, c, d, e)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true-{bar}-4.2
a-1-false-{bar}-4.2
a-2-true-{bar}-4.2
a-2-false-{bar}-4.2
a-3-true-{bar}-4.2
a-3-false-{bar}-4.2
a-4-true-{bar}-4.2
a-4-false-{bar}-4.2
b-1-true-{bar}-4.2
b-1-false-{bar}-4.2
b-2-true-{bar}-4.2
b-2-false-{bar}-4.2
b-3-true-{bar}-4.2
b-3-false-{bar}-4.2
b-4-true-{bar}-4.2
b-4-false-{bar}-4.2

func CrossJoinBy6

func CrossJoinBy6[A, B, C, D, E, F, Out any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, project func(a A, b B, c C, d D, e E, f F) Out) []Out

CrossJoinBy6 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy6([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, func(a string, b int, c bool, d foo, e float64, f string) string {
	return fmt.Sprintf("%v-%v-%v-%v-%v-%v", a, b, c, d, e, f)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true-{bar}-4.2-plop
a-1-false-{bar}-4.2-plop
a-2-true-{bar}-4.2-plop
a-2-false-{bar}-4.2-plop
a-3-true-{bar}-4.2-plop
a-3-false-{bar}-4.2-plop
a-4-true-{bar}-4.2-plop
a-4-false-{bar}-4.2-plop
b-1-true-{bar}-4.2-plop
b-1-false-{bar}-4.2-plop
b-2-true-{bar}-4.2-plop
b-2-false-{bar}-4.2-plop
b-3-true-{bar}-4.2-plop
b-3-false-{bar}-4.2-plop
b-4-true-{bar}-4.2-plop
b-4-false-{bar}-4.2-plop

func CrossJoinBy7

func CrossJoinBy7[A, B, C, D, E, F, G, Out any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, listG []G, project func(a A, b B, c C, d D, e E, f F, g G) Out) []Out

CrossJoinBy7 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy7([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, func(a string, b int, c bool, d foo, e float64, f string, g bool) string {
	return fmt.Sprintf("%v-%v-%v-%v-%v-%v-%v", a, b, c, d, e, f, g)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true-{bar}-4.2-plop-false
a-1-false-{bar}-4.2-plop-false
a-2-true-{bar}-4.2-plop-false
a-2-false-{bar}-4.2-plop-false
a-3-true-{bar}-4.2-plop-false
a-3-false-{bar}-4.2-plop-false
a-4-true-{bar}-4.2-plop-false
a-4-false-{bar}-4.2-plop-false
b-1-true-{bar}-4.2-plop-false
b-1-false-{bar}-4.2-plop-false
b-2-true-{bar}-4.2-plop-false
b-2-false-{bar}-4.2-plop-false
b-3-true-{bar}-4.2-plop-false
b-3-false-{bar}-4.2-plop-false
b-4-true-{bar}-4.2-plop-false
b-4-false-{bar}-4.2-plop-false

func CrossJoinBy8

func CrossJoinBy8[A, B, C, D, E, F, G, H, Out any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, listG []G, listH []H, project func(a A, b B, c C, d D, e E, f F, g G, h H) Out) []Out

CrossJoinBy8 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy8([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, []int{42}, func(a string, b int, c bool, d foo, e float64, f string, g bool, h int) string {
	return fmt.Sprintf("%v-%v-%v-%v-%v-%v-%v-%v", a, b, c, d, e, f, g, h)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true-{bar}-4.2-plop-false-42
a-1-false-{bar}-4.2-plop-false-42
a-2-true-{bar}-4.2-plop-false-42
a-2-false-{bar}-4.2-plop-false-42
a-3-true-{bar}-4.2-plop-false-42
a-3-false-{bar}-4.2-plop-false-42
a-4-true-{bar}-4.2-plop-false-42
a-4-false-{bar}-4.2-plop-false-42
b-1-true-{bar}-4.2-plop-false-42
b-1-false-{bar}-4.2-plop-false-42
b-2-true-{bar}-4.2-plop-false-42
b-2-false-{bar}-4.2-plop-false-42
b-3-true-{bar}-4.2-plop-false-42
b-3-false-{bar}-4.2-plop-false-42
b-4-true-{bar}-4.2-plop-false-42
b-4-false-{bar}-4.2-plop-false-42

func CrossJoinBy9

func CrossJoinBy9[A, B, C, D, E, F, G, H, I, Out any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, listG []G, listH []H, listI []I, project func(a A, b B, c C, d D, e E, f F, g G, h H, i I) Out) []Out

CrossJoinBy9 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. The project function is used to create the output values. It returns an empty list if a list is empty.

Example
result := CrossJoinBy9([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, []int{42}, []string{"hello world"}, func(a string, b int, c bool, d foo, e float64, f string, g bool, h int, i string) string {
	return fmt.Sprintf("%v-%v-%v-%v-%v-%v-%v-%v-%v", a, b, c, d, e, f, g, h, i)
})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

a-1-true-{bar}-4.2-plop-false-42-hello world
a-1-false-{bar}-4.2-plop-false-42-hello world
a-2-true-{bar}-4.2-plop-false-42-hello world
a-2-false-{bar}-4.2-plop-false-42-hello world
a-3-true-{bar}-4.2-plop-false-42-hello world
a-3-false-{bar}-4.2-plop-false-42-hello world
a-4-true-{bar}-4.2-plop-false-42-hello world
a-4-false-{bar}-4.2-plop-false-42-hello world
b-1-true-{bar}-4.2-plop-false-42-hello world
b-1-false-{bar}-4.2-plop-false-42-hello world
b-2-true-{bar}-4.2-plop-false-42-hello world
b-2-false-{bar}-4.2-plop-false-42-hello world
b-3-true-{bar}-4.2-plop-false-42-hello world
b-3-false-{bar}-4.2-plop-false-42-hello world
b-4-true-{bar}-4.2-plop-false-42-hello world
b-4-false-{bar}-4.2-plop-false-42-hello world

func Difference

func Difference[T comparable, Slice ~[]T](list1 Slice, list2 Slice) (Slice, Slice)

Difference returns the difference between two collections. The first value is the collection of element absent of list2. The second value is the collection of element absent of list1.

func DispatchingStrategyFirst

func DispatchingStrategyFirst[T any](msg T, index uint64, channels []<-chan T) int

DispatchingStrategyFirst distributes messages in the first non-full channel. If the capacity of the first channel is exceeded, the second channel will be selected and so on.

func DispatchingStrategyLeast

func DispatchingStrategyLeast[T any](msg T, index uint64, channels []<-chan T) int

DispatchingStrategyLeast distributes messages in the emptiest channel.

func DispatchingStrategyMost

func DispatchingStrategyMost[T any](msg T, index uint64, channels []<-chan T) int

DispatchingStrategyMost distributes messages in the fullest channel. If the channel capacity is exceeded, the next channel will be selected and so on.

func DispatchingStrategyRandom

func DispatchingStrategyRandom[T any](msg T, index uint64, channels []<-chan T) int

DispatchingStrategyRandom distributes messages in a random manner. If the channel capacity is exceeded, another random channel will be selected and so on.

func DispatchingStrategyRoundRobin

func DispatchingStrategyRoundRobin[T any](msg T, index uint64, channels []<-chan T) int

DispatchingStrategyRoundRobin distributes messages in a rotating sequential manner. If the channel capacity is exceeded, the next channel will be selected and so on.

func Drop

func Drop[T any, Slice ~[]T](collection Slice, n int) Slice

Drop drops n elements from the beginning of a slice or array. Play: https://go.dev/play/p/JswS7vXRJP2

Example
list := []int{0, 1, 2, 3, 4, 5}

result := Drop(list, 2)

fmt.Printf("%v", result)
Output:

[2 3 4 5]

func DropByIndex

func DropByIndex[T any](collection []T, indexes ...int) []T

DropByIndex drops elements from a slice or array by the index. A negative index will drop elements from the end of the slice. Play: https://go.dev/play/p/bPIH4npZRxS

Example
list := []int{0, 1, 2, 3, 4, 5}

result := DropByIndex(list, 2)

fmt.Printf("%v", result)
Output:

[0 1 3 4 5]

func DropRight

func DropRight[T any, Slice ~[]T](collection Slice, n int) Slice

DropRight drops n elements from the end of a slice or array. Play: https://go.dev/play/p/GG0nXkSJJa3

Example
list := []int{0, 1, 2, 3, 4, 5}

result := DropRight(list, 2)

fmt.Printf("%v", result)
Output:

[0 1 2 3]

func DropRightWhile

func DropRightWhile[T any, Slice ~[]T](collection Slice, predicate func(item T) bool) Slice

DropRightWhile drops elements from the end of a slice or array while the predicate returns true. Play: https://go.dev/play/p/3-n71oEC0Hz

Example
list := []int{0, 1, 2, 3, 4, 5}

result := DropRightWhile(list, func(val int) bool {
	return val > 2
})

fmt.Printf("%v", result)
Output:

[0 1 2]

func DropWhile

func DropWhile[T any, Slice ~[]T](collection Slice, predicate func(item T) bool) Slice

DropWhile drops elements from the beginning of a slice or array while the predicate returns true. Play: https://go.dev/play/p/7gBPYw2IK16

Example
list := []int{0, 1, 2, 3, 4, 5}

result := DropWhile(list, func(val int) bool {
	return val < 2
})

fmt.Printf("%v", result)
Output:

[2 3 4 5]

func Duration

func Duration(cb func()) time.Duration

Duration returns the time taken to execute a function.

func Duration0

func Duration0(cb func()) time.Duration

Duration0 returns the time taken to execute a function.

func Duration1

func Duration1[A any](cb func() A) (A, time.Duration)

Duration1 returns the time taken to execute a function.

func Duration10

func Duration10[A, B, C, D, E, F, G, H, I, J any](cb func() (A, B, C, D, E, F, G, H, I, J)) (A, B, C, D, E, F, G, H, I, J, time.Duration)

Duration10 returns the time taken to execute a function.

func Duration2

func Duration2[A, B any](cb func() (A, B)) (A, B, time.Duration)

Duration2 returns the time taken to execute a function.

func Duration3

func Duration3[A, B, C any](cb func() (A, B, C)) (A, B, C, time.Duration)

Duration3 returns the time taken to execute a function.

func Duration4

func Duration4[A, B, C, D any](cb func() (A, B, C, D)) (A, B, C, D, time.Duration)

Duration4 returns the time taken to execute a function.

func Duration5

func Duration5[A, B, C, D, E any](cb func() (A, B, C, D, E)) (A, B, C, D, E, time.Duration)

Duration5 returns the time taken to execute a function.

func Duration6

func Duration6[A, B, C, D, E, F any](cb func() (A, B, C, D, E, F)) (A, B, C, D, E, F, time.Duration)

Duration6 returns the time taken to execute a function.

func Duration7

func Duration7[A, B, C, D, E, F, G any](cb func() (A, B, C, D, E, F, G)) (A, B, C, D, E, F, G, time.Duration)

Duration7 returns the time taken to execute a function.

func Duration8

func Duration8[A, B, C, D, E, F, G, H any](cb func() (A, B, C, D, E, F, G, H)) (A, B, C, D, E, F, G, H, time.Duration)

Duration8 returns the time taken to execute a function.

func Duration9

func Duration9[A, B, C, D, E, F, G, H, I any](cb func() (A, B, C, D, E, F, G, H, I)) (A, B, C, D, E, F, G, H, I, time.Duration)

Duration9 returns the time taken to execute a function.

func Earliest

func Earliest(times ...time.Time) time.Time

Earliest search the minimum time.Time of a collection. Returns zero value when the collection is empty.

func EarliestBy

func EarliestBy[T any](collection []T, iteratee func(item T) time.Time) T

EarliestBy search the minimum time.Time of a collection using the given iteratee function. Returns zero value when the collection is empty.

func ElementsMatch

func ElementsMatch[T comparable, Slice ~[]T](list1 Slice, list2 Slice) bool

ElementsMatch returns true if lists contain the same set of elements (including empty set). If there are duplicate elements, the number of appearances of each of them in both lists should match. The order of elements is not checked.

func ElementsMatchBy

func ElementsMatchBy[T any, K comparable](list1 []T, list2 []T, iteratee func(item T) K) bool

ElementsMatchBy returns true if lists contain the same set of elements' keys (including empty set). If there are duplicate keys, the number of appearances of each of them in both lists should match. The order of elements is not checked.

func Elipse deprecated

func Elipse(str string, length int) string

Elipse trims and truncates a string to a specified length and appends an ellipsis if truncated.

Deprecated: Use Ellipsis instead.

func Ellipsis

func Ellipsis(str string, length int) string

Ellipsis trims and truncates a string to a specified length and appends an ellipsis if truncated.

func Empty

func Empty[T any]() T

Empty returns the zero value (https://go.dev/ref/spec#The_zero_value).

func EmptyableToPtr

func EmptyableToPtr[T any](x T) *T

EmptyableToPtr returns a pointer copy of value if it's nonzero. Otherwise, returns nil pointer.

func ErrorsAs

func ErrorsAs[T error](err error) (T, bool)

ErrorsAs is a shortcut for errors.As(err, &&T). Play: https://go.dev/play/p/8wk5rH8UfrE

Example
doSomething := func() error {
	return &myError{}
}

err := doSomething()

if rateLimitErr, ok := ErrorsAs[*myError](err); ok {
	fmt.Printf("is type myError, err: %s", rateLimitErr.Error())
} else {
	fmt.Printf("is not type myError")
}
Output:

is type myError, err: my error

func Every

func Every[T comparable](collection []T, subset []T) bool

Every returns true if all elements of a subset are contained into a collection or if the subset is empty.

func EveryBy

func EveryBy[T any](collection []T, predicate func(item T) bool) bool

EveryBy returns true if the predicate returns true for all elements in the collection or if the collection is empty.

func FanIn

func FanIn[T any](channelBufferCap int, upstreams ...<-chan T) <-chan T

FanIn collects messages from multiple input channels into a single buffered channel. Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.

func FanOut

func FanOut[T any](count int, channelsBufferCap int, upstream <-chan T) []<-chan T

FanOut broadcasts all the upstream messages to multiple downstream channels. When upstream channel reach EOF, downstream channels close. If any downstream channels is full, broadcasting is paused.

func Fill

func Fill[T Clonable[T], Slice ~[]T](collection Slice, initial T) Slice

Fill fills elements of array with `initial` value. Play: https://go.dev/play/p/VwR34GzqEub

Example
list := []foo{{"a"}, {"a"}}

result := Fill(list, foo{"b"})

fmt.Printf("%v", result)
Output:

[{b} {b}]

func Filter

func Filter[T any, Slice ~[]T](collection Slice, predicate func(item T, index int) bool) Slice

Filter iterates over elements of collection, returning an array of all elements predicate returns truthy for. Play: https://go.dev/play/p/Apjg3WeSi7K

Example
list := []int64{1, 2, 3, 4}

result := Filter(list, func(nbr int64, index int) bool {
	return nbr%2 == 0
})

fmt.Printf("%v", result)
Output:

[2 4]

func FilterMap

func FilterMap[T any, R any](collection []T, callback func(item T, index int) (R, bool)) []R

FilterMap returns a slice which obtained after both filtering and mapping using the given callback function. The callback function should return two values:

  • the result of the mapping operation and
  • whether the result element should be included or not.

Play: https://go.dev/play/p/-AuYXfy7opz

Example
list := []int64{1, 2, 3, 4}

result := FilterMap(list, func(nbr int64, index int) (string, bool) {
	return strconv.FormatInt(nbr*2, 10), nbr%2 == 0
})

fmt.Printf("%v", result)
Output:

[4 8]

func FilterMapToSlice

func FilterMapToSlice[K comparable, V any, R any](in map[K]V, iteratee func(key K, value V) (R, bool)) []R

FilterMapToSlice transforms a map into a slice based on specific iteratee. The iteratee returns a value and a boolean. If the boolean is true, the value is added to the result slice. If the boolean is false, the value is not added to the result slice. The order of the keys in the input map is not specified and the order of the keys in the output slice is not guaranteed.

Example
kv := map[int]int64{1: 1, 2: 2, 3: 3, 4: 4}

result := FilterMapToSlice(kv, func(k int, v int64) (string, bool) {
	return fmt.Sprintf("%d_%d", k, v), k%2 == 0
})

sort.StringSlice(result).Sort()
fmt.Printf("%v", result)
Output:

[2_2 4_4]

func FilterReject

func FilterReject[T any, Slice ~[]T](collection Slice, predicate func(T, int) bool) (kept Slice, rejected Slice)

FilterReject mixes Filter and Reject, this method returns two slices, one for the elements of collection that predicate returns truthy for and one for the elements that predicate does not return truthy for.

func FilterSliceToMap

func FilterSliceToMap[T any, K comparable, V any](collection []T, transform func(item T) (K, V, bool)) map[K]V

FilterSliceToMap returns a map containing key-value pairs provided by transform function applied to elements of the given slice. If any of two pairs would have the same key the last one gets added to the map. The order of keys in returned map is not specified and is not guaranteed to be the same from the original array. The third return value of the transform function is a boolean that indicates whether the key-value pair should be included in the map.

Example
list := []string{"a", "aa", "aaa"}

result := FilterSliceToMap(list, func(str string) (string, int, bool) {
	return str, len(str), len(str) > 1
})

fmt.Printf("%v", result)
Output:

map[aa:2 aaa:3]

func Find

func Find[T any](collection []T, predicate func(item T) bool) (T, bool)

Find search an element in a slice based on a predicate. It returns element and true if element was found.

func FindDuplicates

func FindDuplicates[T comparable, Slice ~[]T](collection Slice) Slice

FindDuplicates returns a slice with the first occurrence of each duplicated elements of the collection. The order of result values is determined by the order they occur in the collection.

func FindDuplicatesBy

func FindDuplicatesBy[T any, U comparable, Slice ~[]T](collection Slice, iteratee func(item T) U) Slice

FindDuplicatesBy returns a slice with the first occurrence of each duplicated elements of the collection. The order of result values is determined by the order they occur in the array. It accepts `iteratee` which is invoked for each element in array to generate the criterion by which uniqueness is computed.

func FindIndexOf

func FindIndexOf[T any](collection []T, predicate func(item T) bool) (T, int, bool)

FindIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found.

func FindKey

func FindKey[K comparable, V comparable](object map[K]V, value V) (K, bool)

FindKey returns the key of the first value matching.

func FindKeyBy

func FindKeyBy[K comparable, V any](object map[K]V, predicate func(key K, value V) bool) (K, bool)

FindKeyBy returns the key of the first element predicate returns truthy for.

func FindLastIndexOf

func FindLastIndexOf[T any](collection []T, predicate func(item T) bool) (T, int, bool)

FindLastIndexOf searches last element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found.

func FindOrElse

func FindOrElse[T any](collection []T, fallback T, predicate func(item T) bool) T

FindOrElse search an element in a slice based on a predicate. It returns the element if found or a given fallback value otherwise.

func FindUniques

func FindUniques[T comparable, Slice ~[]T](collection Slice) Slice

FindUniques returns a slice with all the unique elements of the collection. The order of result values is determined by the order they occur in the collection.

func FindUniquesBy

func FindUniquesBy[T any, U comparable, Slice ~[]T](collection Slice, iteratee func(item T) U) Slice

FindUniquesBy returns a slice with all the unique elements of the collection. The order of result values is determined by the order they occur in the array. It accepts `iteratee` which is invoked for each element in array to generate the criterion by which uniqueness is computed.

func First

func First[T any](collection []T) (T, bool)

First returns the first element of a collection and check for availability of the first element.

func FirstOr

func FirstOr[T any](collection []T, fallback T) T

FirstOr returns the first element of a collection or the fallback value if empty.

func FirstOrEmpty

func FirstOrEmpty[T any](collection []T) T

FirstOrEmpty returns the first element of a collection or zero value if empty.

func FlatMap

func FlatMap[T any, R any](collection []T, iteratee func(item T, index int) []R) []R

FlatMap manipulates a slice and transforms and flattens it to a slice of another type. The transform function can either return a slice or a `nil`, and in the `nil` case no value is added to the final slice. Play: https://go.dev/play/p/YSoYmQTA8-U

Example
list := []int64{1, 2, 3, 4}

result := FlatMap(list, func(nbr int64, index int) []string {
	return []string{
		strconv.FormatInt(nbr, 10), // base 10
		strconv.FormatInt(nbr, 2),  // base 2
	}
})

fmt.Printf("%v", result)
Output:

[1 1 2 10 3 11 4 100]

func Flatten

func Flatten[T any, Slice ~[]T](collection []Slice) Slice

Flatten returns an array a single level deep. Play: https://go.dev/play/p/rbp9ORaMpjw

Example
list := [][]int{{0, 1, 2}, {3, 4, 5}}

result := Flatten(list)

fmt.Printf("%v", result)
Output:

[0 1 2 3 4 5]

func ForEach

func ForEach[T any](collection []T, iteratee func(item T, index int))

ForEach iterates over elements of collection and invokes iteratee for each element. Play: https://go.dev/play/p/oofyiUPRf8t

Example
list := []int64{1, 2, 3, 4}

ForEach(list, func(x int64, _ int) {
	fmt.Println(x)
})
Output:

1
2
3
4

func ForEachWhile

func ForEachWhile[T any](collection []T, iteratee func(item T, index int) (goon bool))

ForEachWhile iterates over elements of collection and invokes iteratee for each element collection return value decide to continue or break, like do while(). Play: https://go.dev/play/p/QnLGt35tnow

Example
list := []int64{1, 2, -math.MaxInt, 4}

ForEachWhile(list, func(x int64, _ int) bool {
	if x < 0 {
		return false
	}
	fmt.Println(x)
	return true
})
Output:

1
2

func FromAnySlice

func FromAnySlice[T any](in []any) (out []T, ok bool)

FromAnySlice returns an `any` slice with all elements mapped to a type. Returns false in case of type conversion failure.

func FromEntries

func FromEntries[K comparable, V any](entries []Entry[K, V]) map[K]V

FromEntries transforms an array of key/value pairs into a map. Play: https://go.dev/play/p/oIr5KHFGCEN

Example
result := FromEntries([]Entry[string, int]{
	{
		Key:   "foo",
		Value: 1,
	},
	{
		Key:   "bar",
		Value: 2,
	},
	{
		Key:   "baz",
		Value: 3,
	},
})

fmt.Printf("%v %v %v %v", len(result), result["foo"], result["bar"], result["baz"])
Output:

3 1 2 3

func FromPairs

func FromPairs[K comparable, V any](entries []Entry[K, V]) map[K]V

FromPairs transforms an array of key/value pairs into a map. Alias of FromEntries(). Play: https://go.dev/play/p/oIr5KHFGCEN

func FromPtr

func FromPtr[T any](x *T) T

FromPtr returns the pointer value or empty.

func FromPtrOr

func FromPtrOr[T any](x *T, fallback T) T

FromPtrOr returns the pointer value or the fallback value.

func FromSlicePtr

func FromSlicePtr[T any](collection []*T) []T

FromSlicePtr returns a slice with the pointer values. Returns a zero value in case of a nil pointer element.

func FromSlicePtrOr

func FromSlicePtrOr[T any](collection []*T, fallback T) []T

FromSlicePtrOr returns a slice with the pointer values or the fallback value. Play: https://go.dev/play/p/lbunFvzlUDX

func Generator

func Generator[T any](bufferSize int, generator func(yield func(T))) <-chan T

Generator implements the generator design pattern.

func GroupBy

func GroupBy[T any, U comparable, Slice ~[]T](collection Slice, iteratee func(item T) U) map[U]Slice

GroupBy returns an object composed of keys generated from the results of running each element of collection through iteratee. Play: https://go.dev/play/p/XnQBd_v6brd

Example
list := []int{0, 1, 2, 3, 4, 5}

result := GroupBy(list, func(i int) int {
	return i % 3
})

fmt.Printf("%v\n", result[0])
fmt.Printf("%v\n", result[1])
fmt.Printf("%v\n", result[2])
Output:

[0 3]
[1 4]
[2 5]

func GroupByMap

func GroupByMap[T any, K comparable, V any](collection []T, iteratee func(item T) (K, V)) map[K][]V

GroupByMap returns an object composed of keys generated from the results of running each element of collection through iteratee.

Example
list := []int{0, 1, 2, 3, 4, 5}

result := GroupByMap(list, func(i int) (int, int) {
	return i % 3, i * 2
})

fmt.Printf("%v\n", result[0])
fmt.Printf("%v\n", result[1])
fmt.Printf("%v\n", result[2])
Output:

[0 6]
[2 8]
[4 10]

func HasKey

func HasKey[K comparable, V any](in map[K]V, key K) bool

HasKey returns whether the given key exists. Play: https://go.dev/play/p/aVwubIvECqS

func If

func If[T any](condition bool, result T) *ifElse[T]

If. Play: https://go.dev/play/p/WSw3ApMxhyW

Example
result1 := If(true, 1).
	ElseIf(false, 2).
	Else(3)

result2 := If(false, 1).
	ElseIf(true, 2).
	Else(3)

result3 := If(false, 1).
	ElseIf(false, 2).
	Else(3)

result4 := IfF(true, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

result5 := IfF(false, func() int { return 1 }).
	ElseIfF(true, func() int { return 2 }).
	ElseF(func() int { return 3 })

result6 := IfF(false, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3

func IfF

func IfF[T any](condition bool, resultF func() T) *ifElse[T]

IfF. Play: https://go.dev/play/p/WSw3ApMxhyW

Example
result1 := If(true, 1).
	ElseIf(false, 2).
	Else(3)

result2 := If(false, 1).
	ElseIf(true, 2).
	Else(3)

result3 := If(false, 1).
	ElseIf(false, 2).
	Else(3)

result4 := IfF(true, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

result5 := IfF(false, func() int { return 1 }).
	ElseIfF(true, func() int { return 2 }).
	ElseF(func() int { return 3 })

result6 := IfF(false, func() int { return 1 }).
	ElseIfF(false, func() int { return 2 }).
	ElseF(func() int { return 3 })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3

func IndexOf

func IndexOf[T comparable](collection []T, element T) int

IndexOf returns the index at which the first occurrence of a value is found in an array or return -1 if the value cannot be found.

func Interleave

func Interleave[T any, Slice ~[]T](collections ...Slice) Slice

Interleave round-robin alternating input slices and sequentially appending value at index into result Play: https://go.dev/play/p/-RJkTLQEDVt

Example
list1 := [][]int{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}
list2 := [][]int{{1}, {2, 5, 8}, {3, 6}, {4, 7, 9, 10}}

result1 := Interleave(list1...)
result2 := Interleave(list2...)

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
Output:

[1 2 3 4 5 6 7 8 9]
[1 2 3 4 5 6 7 8 9 10]

func Intersect

func Intersect[T comparable, Slice ~[]T](list1 Slice, list2 Slice) Slice

Intersect returns the intersection between two collections.

func Invert

func Invert[K comparable, V comparable](in map[K]V) map[V]K

Invert creates a map composed of the inverted keys and values. If map contains duplicate values, subsequent values overwrite property assignments of previous values. Play: https://go.dev/play/p/rFQ4rak6iA1

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := Invert(kv)

fmt.Printf("%v %v %v %v", len(result), result[1], result[2], result[3])
Output:

3 foo bar baz

func IsEmpty

func IsEmpty[T comparable](v T) bool

IsEmpty returns true if argument is a zero value.

func IsNil

func IsNil(x any) bool

IsNil checks if a value is nil or if it's a reference type with a nil underlying value.

func IsNotEmpty

func IsNotEmpty[T comparable](v T) bool

IsNotEmpty returns true if argument is not a zero value.

func IsNotNil

func IsNotNil(x any) bool

IsNotNil checks if a value is not nil or if it's not a reference type with a nil underlying value.

func IsSorted

func IsSorted[T constraints.Ordered](collection []T) bool

IsSorted checks if a slice is sorted. Play: https://go.dev/play/p/mc3qR-t4mcx

Example
list := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

result := IsSorted(list)

fmt.Printf("%v", result)
Output:

true

func IsSortedByKey

func IsSortedByKey[T any, K constraints.Ordered](collection []T, iteratee func(item T) K) bool

IsSortedByKey checks if a slice is sorted by iteratee. Play: https://go.dev/play/p/wiG6XyBBu49

Example
list := []string{"a", "bb", "ccc"}

result := IsSortedByKey(list, func(s string) int {
	return len(s)
})

fmt.Printf("%v", result)
Output:

true

func IsZero

func IsZero(v any) bool

IsZero returns true if the value is zero.

func KebabCase

func KebabCase(str string) string

KebabCase converts string to kebab case.

func KeyBy

func KeyBy[K comparable, V any](collection []V, iteratee func(item V) K) map[K]V

KeyBy transforms a slice or an array of structs to a map based on a pivot callback. Play: https://go.dev/play/p/mdaClUAT-zZ

Example
list := []string{"a", "aa", "aaa"}

result := KeyBy(list, func(str string) int {
	return len(str)
})

fmt.Printf("%v", result)
Output:

map[1:a 2:aa 3:aaa]

func Keyify

func Keyify[T comparable, Slice ~[]T](collection Slice) map[T]struct{}

Keyify returns a map with each unique element of the slice as a key.

Example
list := []string{"a", "a", "b", "b", "d"}

set := Keyify(list)
_, ok1 := set["a"]
_, ok2 := set["c"]
fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", set)
Output:

true
false
map[a:{} b:{} d:{}]

func Keys

func Keys[K comparable, V any](in ...map[K]V) []K

Keys creates an array of the map keys. Play: https://go.dev/play/p/Uu11fHASqrU

Example
kv := map[string]int{"foo": 1, "bar": 2}
kv2 := map[string]int{"baz": 3}

result := Keys(kv, kv2)
sort.Strings(result)
fmt.Printf("%v", result)
Output:

[bar baz foo]

func Last

func Last[T any](collection []T) (T, bool)

Last returns the last element of a collection or error if empty.

func LastIndexOf

func LastIndexOf[T comparable](collection []T, element T) int

LastIndexOf returns the index at which the last occurrence of a value is found in an array or return -1 if the value cannot be found.

func LastOr

func LastOr[T any](collection []T, fallback T) T

LastOr returns the last element of a collection or the fallback value if empty.

func LastOrEmpty

func LastOrEmpty[T any](collection []T) T

LastOrEmpty returns the last element of a collection or zero value if empty.

func Latest

func Latest(times ...time.Time) time.Time

Latest search the maximum time.Time of a collection. Returns zero value when the collection is empty.

func LatestBy

func LatestBy[T any](collection []T, iteratee func(item T) time.Time) T

LatestBy search the maximum time.Time of a collection using the given iteratee function. Returns zero value when the collection is empty.

func Map

func Map[T any, R any](collection []T, iteratee func(item T, index int) R) []R

Map manipulates a slice and transforms it to a slice of another type. Play: https://go.dev/play/p/OkPcYAhBo0D

Example
list := []int64{1, 2, 3, 4}

result := Map(list, func(nbr int64, index int) string {
	return strconv.FormatInt(nbr*2, 10)
})

fmt.Printf("%v", result)
Output:

[2 4 6 8]

func MapAll

func MapAll[K comparable, V any](in map[K]V, predicate func(key K, value V) bool) bool

MapAll returns true if all elements of the map satisfy the predicate.

func MapAny

func MapAny[K comparable, V any](in map[K]V, predicate func(key K, value V) bool) bool

MapAny returns true if at least one element of the map satisfies the predicate.

func MapEntries

func MapEntries[K1 comparable, V1 any, K2 comparable, V2 any](in map[K1]V1, iteratee func(key K1, value V1) (K2, V2)) map[K2]V2

MapEntries manipulates a map entries and transforms it to a map of another type. Play: https://go.dev/play/p/VuvNQzxKimT

Example
kv := map[string]int{"foo": 1, "bar": 2}

result := MapEntries(kv, func(k string, v int) (int, string) {
	return v, k
})

fmt.Printf("%v\n", result)
Output:

map[1:foo 2:bar]

func MapKeys

func MapKeys[K comparable, V any, R comparable](in map[K]V, iteratee func(value V, key K) R) map[R]V

MapKeys manipulates a map keys and transforms it to a map of another type. Play: https://go.dev/play/p/9_4WPIqOetJ

Example
kv := map[int]int{1: 1, 2: 2, 3: 3, 4: 4}

result := MapKeys(kv, func(_ int, k int) string {
	return strconv.FormatInt(int64(k), 10)
})

fmt.Printf("%v %v %v %v %v", len(result), result["1"], result["2"], result["3"], result["4"])
Output:

4 1 2 3 4

func MapToSlice

func MapToSlice[K comparable, V any, R any](in map[K]V, iteratee func(key K, value V) R) []R

MapToSlice transforms a map into a slice based on specific iteratee Play: https://go.dev/play/p/ZuiCZpDt6LD

Example
kv := map[int]int64{1: 1, 2: 2, 3: 3, 4: 4}

result := MapToSlice(kv, func(k int, v int64) string {
	return fmt.Sprintf("%d_%d", k, v)
})

sort.StringSlice(result).Sort()
fmt.Printf("%v", result)
Output:

[1_1 2_2 3_3 4_4]

func MapValues

func MapValues[K comparable, V any, R any](in map[K]V, iteratee func(value V, key K) R) map[K]R

MapValues manipulates a map values and transforms it to a map of another type. Play: https://go.dev/play/p/T_8xAfvcf0W

Example
kv := map[int]int{1: 1, 2: 2, 3: 3, 4: 4}

result := MapValues(kv, func(v int, _ int) string {
	return strconv.FormatInt(int64(v), 10)
})

fmt.Printf("%v %q %q %q %q", len(result), result[1], result[2], result[3], result[4])
Output:

4 "1" "2" "3" "4"

func Max

func Max[T constraints.Ordered](collection []T) T

Max searches the maximum value of a collection. Returns zero value when the collection is empty.

func MaxBy

func MaxBy[T any](collection []T, comparison func(a T, b T) bool) T

MaxBy search the maximum value of a collection using the given comparison function. If several values of the collection are equal to the greatest value, returns the first such value. Returns zero value when the collection is empty.

func MaxIndex

func MaxIndex[T constraints.Ordered](collection []T) (T, int)

MaxIndex searches the maximum value of a collection and the index of the maximum value. Returns (zero value, -1) when the collection is empty.

func MaxIndexBy

func MaxIndexBy[T any](collection []T, comparison func(a T, b T) bool) (T, int)

MaxIndexBy search the maximum value of a collection using the given comparison function and the index of the maximum value. If several values of the collection are equal to the greatest value, returns the first such value. Returns (zero value, -1) when the collection is empty.

func Mean

func Mean[T constraints.Float | constraints.Integer](collection []T) T

Mean calculates the mean of a collection of numbers.

Example
list := []int{1, 2, 3, 4, 5}

result := Mean(list)

fmt.Printf("%v", result)
Output:

3

func MeanBy

func MeanBy[T any, R constraints.Float | constraints.Integer](collection []T, iteratee func(item T) R) R

MeanBy calculates the mean of a collection of numbers using the given return value from the iteration function.

Example
list := []string{"foo", "bar"}

result := MeanBy(list, func(item string) int {
	return len(item)
})

fmt.Printf("%v", result)
Output:

3

func Min

func Min[T constraints.Ordered](collection []T) T

Min search the minimum value of a collection. Returns zero value when the collection is empty.

func MinBy

func MinBy[T any](collection []T, comparison func(a T, b T) bool) T

MinBy search the minimum value of a collection using the given comparison function. If several values of the collection are equal to the smallest value, returns the first such value. Returns zero value when the collection is empty.

func MinIndex

func MinIndex[T constraints.Ordered](collection []T) (T, int)

MinIndex search the minimum value of a collection and the index of the minimum value. Returns (zero value, -1) when the collection is empty.

func MinIndexBy

func MinIndexBy[T any](collection []T, comparison func(a T, b T) bool) (T, int)

MinIndexBy search the minimum value of a collection using the given comparison function and the index of the minimum value. If several values of the collection are equal to the smallest value, returns the first such value. Returns (zero value, -1) when the collection is empty.

func Must

func Must[T any](val T, err any, messageArgs ...any) T

Must is a helper that wraps a call to a function returning a value and an error and panics if err is error or false. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must(42, nil)

// won't panic
cb := func() (int, error) {
	return 42, nil
}
Must(cb())

// will panic
Must(42, fmt.Errorf("my error"))

// will panic with error message
Must(42, fmt.Errorf("world"), "hello")

func Must0

func Must0(err any, messageArgs ...any)

Must0 has the same behavior as Must, but callback returns no variable. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must0(nil)

// will panic
Must0(fmt.Errorf("my error"))

// will panic with error message
Must0(fmt.Errorf("world"), "hello")

func Must1

func Must1[T any](val T, err any, messageArgs ...any) T

Must1 is an alias to Must Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must1(42, nil)

// won't panic
cb := func() (int, error) {
	return 42, nil
}
Must1(cb())

// will panic
Must1(42, fmt.Errorf("my error"))

// will panic with error message
Must1(42, fmt.Errorf("world"), "hello")

func Must2

func Must2[T1, T2 any](val1 T1, val2 T2, err any, messageArgs ...any) (T1, T2)

Must2 has the same behavior as Must, but callback returns 2 variables. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must2(42, "hello", nil)

// will panic
Must2(42, "hello", fmt.Errorf("my error"))

// will panic with error message
Must2(42, "hello", fmt.Errorf("world"), "hello")

func Must3

func Must3[T1, T2, T3 any](val1 T1, val2 T2, val3 T3, err any, messageArgs ...any) (T1, T2, T3)

Must3 has the same behavior as Must, but callback returns 3 variables. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must3(42, "hello", 4.2, nil)

// will panic
Must3(42, "hello", 4.2, fmt.Errorf("my error"))

// will panic with error message
Must3(42, "hello", 4.2, fmt.Errorf("world"), "hello")

func Must4

func Must4[T1, T2, T3, T4 any](val1 T1, val2 T2, val3 T3, val4 T4, err any, messageArgs ...any) (T1, T2, T3, T4)

Must4 has the same behavior as Must, but callback returns 4 variables. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must4(42, "hello", 4.2, true, nil)

// will panic
Must4(42, "hello", 4.2, true, fmt.Errorf("my error"))

// will panic with error message
Must4(42, "hello", 4.2, true, fmt.Errorf("world"), "hello")

func Must5

func Must5[T1, T2, T3, T4, T5 any](val1 T1, val2 T2, val3 T3, val4 T4, val5 T5, err any, messageArgs ...any) (T1, T2, T3, T4, T5)

Must5 has the same behavior as Must, but callback returns 5 variables. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must5(42, "hello", 4.2, true, foo{}, nil)

// will panic
Must5(42, "hello", 4.2, true, foo{}, fmt.Errorf("my error"))

// will panic with error message
Must5(42, "hello", 4.2, true, foo{}, fmt.Errorf("world"), "hello")

func Must6

func Must6[T1, T2, T3, T4, T5, T6 any](val1 T1, val2 T2, val3 T3, val4 T4, val5 T5, val6 T6, err any, messageArgs ...any) (T1, T2, T3, T4, T5, T6)

Must6 has the same behavior as Must, but callback returns 6 variables. Play: https://go.dev/play/p/TMoWrRp3DyC

Example
defer func() {
	_ = recover()
}()

// won't panic
Must5(42, "hello", 4.2, true, foo{}, "foobar", nil)

// will panic
Must5(42, "hello", 4.2, true, foo{}, "foobar", fmt.Errorf("my error"))

// will panic with error message
Must5(42, "hello", 4.2, true, foo{}, "foobar", fmt.Errorf("world"), "hello")

func NewDebounce

func NewDebounce(duration time.Duration, f ...func()) (func(), func())

NewDebounce creates a debounced instance that delays invoking functions given until after wait milliseconds have elapsed. Play: https://go.dev/play/p/mz32VMK2nqe

Example
i := int32(0)
calls := []int32{}
mu := sync.Mutex{}

debounce, cancel := NewDebounce(time.Millisecond, func() {
	mu.Lock()
	defer mu.Unlock()
	calls = append(calls, atomic.LoadInt32(&i))
})

debounce()
atomic.AddInt32(&i, 1)

time.Sleep(5 * time.Millisecond)

debounce()
atomic.AddInt32(&i, 1)
debounce()
atomic.AddInt32(&i, 1)
debounce()
atomic.AddInt32(&i, 1)

time.Sleep(5 * time.Millisecond)

cancel()

mu.Lock()
fmt.Printf("%v", calls)
mu.Unlock()
Output:

[1 4]

func NewDebounceBy

func NewDebounceBy[T comparable](duration time.Duration, f ...func(key T, count int)) (func(key T), func(key T))

NewDebounceBy creates a debounced instance for each distinct key, that delays invoking functions given until after wait milliseconds have elapsed. Play: https://go.dev/play/p/d3Vpt6pxhY8

Example
calls := map[string][]int{}
mu := sync.Mutex{}

debounce, cancel := NewDebounceBy(time.Millisecond, func(userID string, count int) {
	mu.Lock()
	defer mu.Unlock()

	if _, ok := calls[userID]; !ok {
		calls[userID] = []int{}
	}

	calls[userID] = append(calls[userID], count)
})

debounce("samuel")
debounce("john")

time.Sleep(5 * time.Millisecond)

debounce("john")
debounce("john")
debounce("samuel")
debounce("john")

time.Sleep(5 * time.Millisecond)

cancel("samuel")
cancel("john")

mu.Lock()
fmt.Printf("samuel: %v\n", calls["samuel"])
fmt.Printf("john: %v\n", calls["john"])
mu.Unlock()
Output:

samuel: [1 1]
john: [1 3]

func NewThrottle

func NewThrottle(interval time.Duration, f ...func()) (throttle func(), reset func())

NewThrottle creates a throttled instance that invokes given functions only once in every interval. This returns 2 functions, First one is throttled function and Second one is a function to reset interval

Example
throttle, reset := NewThrottle(100*time.Millisecond, func() {
	fmt.Println("Called once in every 100ms")
})

for j := 0; j < 10; j++ {
	throttle()
	time.Sleep(30 * time.Millisecond)
}

reset()
Output:

Called once in every 100ms
Called once in every 100ms
Called once in every 100ms

func NewThrottleBy

func NewThrottleBy[T comparable](interval time.Duration, f ...func(key T)) (throttle func(key T), reset func())

NewThrottleBy creates a throttled instance that invokes given functions only once in every interval. This returns 2 functions, First one is throttled function and Second one is a function to reset interval

Example
throttle, reset := NewThrottleBy(100*time.Millisecond, func(key string) {
	fmt.Println(key, "Called once in every 100ms")
})

for j := 0; j < 10; j++ {
	throttle("foo")
	throttle("bar")
	time.Sleep(30 * time.Millisecond)
}

reset()
Output:

foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms

func NewThrottleByWithCount

func NewThrottleByWithCount[T comparable](interval time.Duration, count int, f ...func(key T)) (throttle func(key T), reset func())

NewThrottleByWithCount is NewThrottleBy with count limit, throttled function will be invoked count times in every interval.

Example
throttle, reset := NewThrottleByWithCount(100*time.Millisecond, 2, func(key string) {
	fmt.Println(key, "Called once in every 100ms")
})

for j := 0; j < 10; j++ {
	throttle("foo")
	throttle("bar")
	time.Sleep(30 * time.Millisecond)
}

reset()
Output:

foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms
foo Called once in every 100ms
bar Called once in every 100ms

func NewThrottleWithCount

func NewThrottleWithCount(interval time.Duration, count int, f ...func()) (throttle func(), reset func())

NewThrottleWithCount is NewThrottle with count limit, throttled function will be invoked count times in every interval.

Example
throttle, reset := NewThrottleWithCount(100*time.Millisecond, 2, func() {
	fmt.Println("Called once in every 100ms")
})

for j := 0; j < 10; j++ {
	throttle()
	time.Sleep(30 * time.Millisecond)
}

reset()
Output:

Called once in every 100ms
Called once in every 100ms
Called once in every 100ms
Called once in every 100ms
Called once in every 100ms
Called once in every 100ms

func Nil

func Nil[T any]() *T

Nil returns a nil pointer of type.

func None

func None[T comparable](collection []T, subset []T) bool

None returns true if no element of a subset are contained into a collection or if the subset is empty.

func NoneBy

func NoneBy[T any](collection []T, predicate func(item T) bool) bool

NoneBy returns true if the predicate returns true for none of the elements in the collection or if the collection is empty.

func Nth

func Nth[T any, N constraints.Integer](collection []T, nth N) (T, error)

Nth returns the element at index `nth` of collection. If `nth` is negative, the nth element from the end is returned. An error is returned when nth is out of slice bounds.

func NthOr

func NthOr[T any, N constraints.Integer](collection []T, nth N, fallback T) T

NthOr returns the element at index `nth` of collection. If `nth` is negative, it returns the nth element from the end. If `nth` is out of slice bounds, it returns the fallback value instead of an error.

func NthOrEmpty

func NthOrEmpty[T any, N constraints.Integer](collection []T, nth N) T

NthOrEmpty returns the element at index `nth` of collection. If `nth` is negative, it returns the nth element from the end. If `nth` is out of slice bounds, it returns the zero value (empty value) for that type.

func OmitBy

func OmitBy[K comparable, V any, Map ~map[K]V](in Map, predicate func(key K, value V) bool) Map

OmitBy returns same map type filtered by given predicate. Play: https://go.dev/play/p/EtBsR43bdsd

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := OmitBy(kv, func(key string, value int) bool {
	return value%2 == 1
})

fmt.Printf("%v", result)
Output:

map[bar:2]

func OmitByKeys

func OmitByKeys[K comparable, V any, Map ~map[K]V](in Map, keys []K) Map

OmitByKeys returns same map type filtered by given keys. Play: https://go.dev/play/p/t1QjCrs-ysk

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := OmitByKeys(kv, []string{"foo", "baz"})

fmt.Printf("%v", result)
Output:

map[bar:2]

func OmitByValues

func OmitByValues[K comparable, V comparable, Map ~map[K]V](in Map, values []V) Map

OmitByValues returns same map type filtered by given values. Play: https://go.dev/play/p/9UYZi-hrs8j

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := OmitByValues(kv, []int{1, 3})

fmt.Printf("%v", result)
Output:

map[bar:2]

func Partial

func Partial[T1, T2, R any](f func(a T1, b T2) R, arg1 T1) func(T2) R

Partial returns new function that, when called, has its first argument set to the provided value.

func Partial1

func Partial1[T1, T2, R any](f func(T1, T2) R, arg1 T1) func(T2) R

Partial1 returns new function that, when called, has its first argument set to the provided value.

func Partial2

func Partial2[T1, T2, T3, R any](f func(T1, T2, T3) R, arg1 T1) func(T2, T3) R

Partial2 returns new function that, when called, has its first argument set to the provided value.

func Partial3

func Partial3[T1, T2, T3, T4, R any](f func(T1, T2, T3, T4) R, arg1 T1) func(T2, T3, T4) R

Partial3 returns new function that, when called, has its first argument set to the provided value.

func Partial4

func Partial4[T1, T2, T3, T4, T5, R any](f func(T1, T2, T3, T4, T5) R, arg1 T1) func(T2, T3, T4, T5) R

Partial4 returns new function that, when called, has its first argument set to the provided value.

func Partial5

func Partial5[T1, T2, T3, T4, T5, T6, R any](f func(T1, T2, T3, T4, T5, T6) R, arg1 T1) func(T2, T3, T4, T5, T6) R

Partial5 returns new function that, when called, has its first argument set to the provided value

func PartitionBy

func PartitionBy[T any, K comparable, Slice ~[]T](collection Slice, iteratee func(item T) K) []Slice

PartitionBy returns an array of elements split into groups. The order of grouped values is determined by the order they occur in collection. The grouping is generated from the results of running each element of collection through iteratee. Play: https://go.dev/play/p/NfQ_nGjkgXW

Example
list := []int{-2, -1, 0, 1, 2, 3, 4}

result := PartitionBy(list, func(x int) string {
	if x < 0 {
		return "negative"
	} else if x%2 == 0 {
		return "even"
	}
	return "odd"
})

for _, item := range result {
	fmt.Printf("%v\n", item)
}
Output:

[-2 -1]
[0 2 4]
[1 3]

func PascalCase

func PascalCase(str string) string

PascalCase converts string to pascal case.

func PickBy

func PickBy[K comparable, V any, Map ~map[K]V](in Map, predicate func(key K, value V) bool) Map

PickBy returns same map type filtered by given predicate. Play: https://go.dev/play/p/kdg8GR_QMmf

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := PickBy(kv, func(key string, value int) bool {
	return value%2 == 1
})

fmt.Printf("%v %v %v", len(result), result["foo"], result["baz"])
Output:

2 1 3

func PickByKeys

func PickByKeys[K comparable, V any, Map ~map[K]V](in Map, keys []K) Map

PickByKeys returns same map type filtered by given keys. Play: https://go.dev/play/p/R1imbuci9qU

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := PickByKeys(kv, []string{"foo", "baz"})

fmt.Printf("%v %v %v", len(result), result["foo"], result["baz"])
Output:

2 1 3

func PickByValues

func PickByValues[K comparable, V comparable, Map ~map[K]V](in Map, values []V) Map

PickByValues returns same map type filtered by given values. Play: https://go.dev/play/p/1zdzSvbfsJc

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := PickByValues(kv, []int{1, 3})

fmt.Printf("%v %v %v", len(result), result["foo"], result["baz"])
Output:

2 1 3

func Product

func Product[T constraints.Float | constraints.Integer | constraints.Complex](collection []T) T

Product gets the product of the values in a collection. If collection is empty 0 is returned. Play: https://go.dev/play/p/2_kjM_smtAH

Example
list := []int{1, 2, 3, 4, 5}

result := Product(list)

fmt.Printf("%v", result)
Output:

120

func ProductBy

func ProductBy[T any, R constraints.Float | constraints.Integer | constraints.Complex](collection []T, iteratee func(item T) R) R

ProductBy summarizes the values in a collection using the given return value from the iteration function. If collection is empty 0 is returned. Play: https://go.dev/play/p/wadzrWr9Aer

Example
list := []string{"foo", "bar"}

result := ProductBy(list, func(item string) int {
	return len(item)
})

fmt.Printf("%v", result)
Output:

9

func RandomString

func RandomString(size int, charset []rune) string

RandomString return a random string. Play: https://go.dev/play/p/rRseOQVVum4

func Range

func Range(elementNum int) []int

Range creates an array of numbers (positive and/or negative) with given length. Play: https://go.dev/play/p/0r6VimXAi9H

Example
result1 := Range(4)
result2 := Range(-4)
result3 := RangeFrom(1, 5)
result4 := RangeFrom(1.0, 5)
result5 := RangeWithSteps(0, 20, 5)
result6 := RangeWithSteps[float32](-1.0, -4.0, -1.0)
result7 := RangeWithSteps(1, 4, -1)
result8 := Range(0)

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
fmt.Printf("%v\n", result7)
fmt.Printf("%v\n", result8)
Output:

[0 1 2 3]
[0 -1 -2 -3]
[1 2 3 4 5]
[1 2 3 4 5]
[0 5 10 15]
[-1 -2 -3]
[]
[]

func RangeFrom

func RangeFrom[T constraints.Integer | constraints.Float](start T, elementNum int) []T

RangeFrom creates an array of numbers from start with specified length. Play: https://go.dev/play/p/0r6VimXAi9H

func RangeWithSteps

func RangeWithSteps[T constraints.Integer | constraints.Float](start, end, step T) []T

RangeWithSteps creates an array of numbers (positive and/or negative) progressing from start up to, but not including end. step set to zero will return empty array. Play: https://go.dev/play/p/0r6VimXAi9H

func Reduce

func Reduce[T any, R any](collection []T, accumulator func(agg R, item T, index int) R, initial R) R

Reduce reduces collection to a value which is the accumulated result of running each element in collection through accumulator, where each successive invocation is supplied the return value of the previous. Play: https://go.dev/play/p/R4UHXZNaaUG

Example
list := []int64{1, 2, 3, 4}

result := Reduce(list, func(agg int64, item int64, index int) int64 {
	return agg + item
}, 0)

fmt.Printf("%v", result)
Output:

10

func ReduceRight

func ReduceRight[T any, R any](collection []T, accumulator func(agg R, item T, index int) R, initial R) R

ReduceRight helper is like Reduce except that it iterates over elements of collection from right to left. Play: https://go.dev/play/p/Fq3W70l7wXF

Example
list := [][]int{{0, 1}, {2, 3}, {4, 5}}

result := ReduceRight(list, func(agg []int, item []int, index int) []int {
	return append(agg, item...)
}, []int{})

fmt.Printf("%v", result)
Output:

[4 5 2 3 0 1]

func Reject

func Reject[T any, Slice ~[]T](collection Slice, predicate func(item T, index int) bool) Slice

Reject is the opposite of Filter, this method returns the elements of collection that predicate does not return truthy for. Play: https://go.dev/play/p/YkLMODy1WEL

Example
list := []int{0, 1, 2, 3, 4, 5}

result := Reject(list, func(x int, _ int) bool {
	return x%2 == 0
})

fmt.Printf("%v", result)
Output:

[1 3 5]

func RejectMap

func RejectMap[T any, R any](collection []T, callback func(item T, index int) (R, bool)) []R

RejectMap is the opposite of FilterMap, this method returns a slice which obtained after both filtering and mapping using the given callback function. The callback function should return two values:

  • the result of the mapping operation and
  • whether the result element should be included or not.

func Repeat

func Repeat[T Clonable[T]](count int, initial T) []T

Repeat builds a slice with N copies of initial value. Play: https://go.dev/play/p/g3uHXbmc3b6

Example
result := Repeat(2, foo{"a"})

fmt.Printf("%v", result)
Output:

[{a} {a}]

func RepeatBy

func RepeatBy[T any](count int, predicate func(index int) T) []T

RepeatBy builds a slice with values returned by N calls of callback. Play: https://go.dev/play/p/ozZLCtX_hNU

Example
result := RepeatBy(5, func(i int) string {
	return strconv.FormatInt(int64(math.Pow(float64(i), 2)), 10)
})

fmt.Printf("%v", result)
Output:

[0 1 4 9 16]

func Replace

func Replace[T comparable, Slice ~[]T](collection Slice, old T, new T, n int) Slice

Replace returns a copy of the slice with the first n non-overlapping instances of old replaced by new. Play: https://go.dev/play/p/XfPzmf9gql6

Example
list := []int{0, 1, 0, 1, 2, 3, 0}

result := Replace(list, 0, 42, 1)
fmt.Printf("%v\n", result)

result = Replace(list, -1, 42, 1)
fmt.Printf("%v\n", result)

result = Replace(list, 0, 42, 2)
fmt.Printf("%v\n", result)

result = Replace(list, 0, 42, -1)
fmt.Printf("%v\n", result)
Output:

[42 1 0 1 2 3 0]
[0 1 0 1 2 3 0]
[42 1 42 1 2 3 0]
[42 1 42 1 2 3 42]

func ReplaceAll

func ReplaceAll[T comparable, Slice ~[]T](collection Slice, old T, new T) Slice

ReplaceAll returns a copy of the slice with all non-overlapping instances of old replaced by new. Play: https://go.dev/play/p/a9xZFUHfYcV

Example
list := []string{"", "foo", "", "bar", ""}

result := Compact(list)

fmt.Printf("%v", result)
Output:

[foo bar]

func Reverse deprecated

func Reverse[T any, Slice ~[]T](collection Slice) Slice

Reverse reverses array so that the first element becomes the last, the second element becomes the second to last, and so on. Play: https://go.dev/play/p/iv2e9jslfBM

Deprecated: use mutable.Reverse() instead.

Example
list := []int{0, 1, 2, 3, 4, 5}

result := Reverse(list)

fmt.Printf("%v", result)
Output:

[5 4 3 2 1 0]

func RuneLength

func RuneLength(str string) int

RuneLength is an alias to utf8.RuneCountInString which returns the number of runes in string. Play: https://go.dev/play/p/tuhgW_lWY8l

Example
result1, chars1 := RuneLength("hellô"), len("hellô")
result2, chars2 := RuneLength("🤘"), len("🤘")

fmt.Printf("%v %v\n", result1, chars1)
fmt.Printf("%v %v\n", result2, chars2)
Output:

5 6
1 4

func Sample

func Sample[T any](collection []T) T

Sample returns a random item from collection.

func SampleBy

func SampleBy[T any](collection []T, randomIntGenerator randomIntGenerator) T

SampleBy returns a random item from collection, using randomIntGenerator as the random index generator.

func Samples

func Samples[T any, Slice ~[]T](collection Slice, count int) Slice

Samples returns N random unique items from collection.

func SamplesBy

func SamplesBy[T any, Slice ~[]T](collection Slice, count int, randomIntGenerator randomIntGenerator) Slice

SamplesBy returns N random unique items from collection, using randomIntGenerator as the random index generator.

func Shuffle deprecated

func Shuffle[T any, Slice ~[]T](collection Slice) Slice

Shuffle returns an array of shuffled values. Uses the Fisher-Yates shuffle algorithm. Play: https://go.dev/play/p/ZTGG7OUCdnp

Deprecated: use mutable.Shuffle() instead.

Example
list := []int{0, 1, 2, 3, 4, 5}

result := Shuffle(list)

fmt.Printf("%v", result)

func Slice

func Slice[T any, Slice ~[]T](collection Slice, start int, end int) Slice

Slice returns a copy of a slice from `start` up to, but not including `end`. Like `slice[start:end]`, but does not panic on overflow. Play: https://go.dev/play/p/8XWYhfMMA1h

Example
list := []int{0, 1, 2, 3, 4, 5}

result := Slice(list, 1, 4)
fmt.Printf("%v\n", result)

result = Slice(list, 4, 1)
fmt.Printf("%v\n", result)

result = Slice(list, 4, 5)
fmt.Printf("%v\n", result)
Output:

[1 2 3]
[]
[4]

func SliceToChannel

func SliceToChannel[T any](bufferSize int, collection []T) <-chan T

SliceToChannel returns a read-only channels of collection elements.

func SliceToMap

func SliceToMap[T any, K comparable, V any](collection []T, transform func(item T) (K, V)) map[K]V

SliceToMap returns a map containing key-value pairs provided by transform function applied to elements of the given slice. If any of two pairs would have the same key the last one gets added to the map. The order of keys in returned map is not specified and is not guaranteed to be the same from the original array. Alias of Associate(). Play: https://go.dev/play/p/WHa2CfMO3Lr

Example
list := []string{"a", "aa", "aaa"}

result := SliceToMap(list, func(str string) (string, int) {
	return str, len(str)
})

fmt.Printf("%v", result)
Output:

map[a:1 aa:2 aaa:3]

func SnakeCase

func SnakeCase(str string) string

SnakeCase converts string to snake case.

func Some

func Some[T comparable](collection []T, subset []T) bool

Some returns true if at least 1 element of a subset is contained into a collection. If the subset is empty Some returns false.

func SomeBy

func SomeBy[T any](collection []T, predicate func(item T) bool) bool

SomeBy returns true if the predicate returns true for any of the elements in the collection. If the collection is empty SomeBy returns false.

func Splice

func Splice[T any, Slice ~[]T](collection Slice, i int, elements ...T) Slice

Splice inserts multiple elements at index i. A negative index counts back from the end of the slice. The helper is protected against overflow errors. Play: https://go.dev/play/p/G5_GhkeSUBA

func Subset

func Subset[T any, Slice ~[]T](collection Slice, offset int, length uint) Slice

Subset returns a copy of a slice from `offset` up to `length` elements. Like `slice[start:start+length]`, but does not panic on overflow. Play: https://go.dev/play/p/tOQu1GhFcog

Example
list := []int{0, 1, 2, 3, 4, 5}

result := Subset(list, 2, 3)

fmt.Printf("%v", result)
Output:

[2 3 4]

func Substring

func Substring[T ~string](str T, offset int, length uint) T

Substring return part of a string. Play: https://go.dev/play/p/TQlxQi82Lu1

Example
result1 := Substring("hello", 2, 3)
result2 := Substring("hello", -4, 3)
result3 := Substring("hello", -2, math.MaxUint)
result4 := Substring("🏠🐶🐱", 0, 2)
result5 := Substring("你好,世界", 0, 3)

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
Output:

llo
ell
lo
🏠🐶
你好,

func Sum

func Sum[T constraints.Float | constraints.Integer | constraints.Complex](collection []T) T

Sum sums the values in a collection. If collection is empty 0 is returned. Play: https://go.dev/play/p/upfeJVqs4Bt

Example
list := []int{1, 2, 3, 4, 5}

sum := Sum(list)

fmt.Printf("%v", sum)
Output:

15

func SumBy

func SumBy[T any, R constraints.Float | constraints.Integer | constraints.Complex](collection []T, iteratee func(item T) R) R

SumBy summarizes the values in a collection using the given return value from the iteration function. If collection is empty 0 is returned. Play: https://go.dev/play/p/Dz_a_7jN_ca

Example
list := []string{"foo", "bar"}

result := SumBy(list, func(item string) int {
	return len(item)
})

fmt.Printf("%v", result)
Output:

6

func Switch

func Switch[T comparable, R any](predicate T) *switchCase[T, R]

Switch is a pure functional switch/case/default statement. Play: https://go.dev/play/p/TGbKUMAeRUd

Example
result1 := Switch[int, string](1).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result2 := Switch[int, string](2).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result3 := Switch[int, string](42).
	Case(1, "1").
	Case(2, "2").
	Default("3")

result4 := Switch[int, string](1).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result5 := Switch[int, string](2).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

result6 := Switch[int, string](42).
	CaseF(1, func() string { return "1" }).
	CaseF(2, func() string { return "2" }).
	DefaultF(func() string { return "3" })

fmt.Printf("%v\n", result1)
fmt.Printf("%v\n", result2)
fmt.Printf("%v\n", result3)
fmt.Printf("%v\n", result4)
fmt.Printf("%v\n", result5)
fmt.Printf("%v\n", result6)
Output:

1
2
3
1
2
3

func Synchronize

func Synchronize(opt ...sync.Locker) *synchronize

Synchronize wraps the underlying callback in a mutex. It receives an optional mutex.

func Ternary

func Ternary[T any](condition bool, ifOutput T, elseOutput T) T

Ternary is a 1 line if/else statement. Take care to avoid dereferencing potentially nil pointers in your A/B expressions, because they are both evaluated. See TernaryF to avoid this problem. Play: https://go.dev/play/p/t-D7WBL44h2

Example
result := Ternary(true, "a", "b")

fmt.Printf("%v", result)
Output:

a

func TernaryF

func TernaryF[T any](condition bool, ifFunc func() T, elseFunc func() T) T

TernaryF is a 1 line if/else statement whose options are functions Play: https://go.dev/play/p/AO4VW20JoqM

Example
result := TernaryF(true, func() string { return "a" }, func() string { return "b" })

fmt.Printf("%v", result)
Output:

a

func Times

func Times[T any](count int, iteratee func(index int) T) []T

Times invokes the iteratee n times, returning an array of the results of each invocation. The iteratee is invoked with index as argument. Play: https://go.dev/play/p/vgQj3Glr6lT

Example
result := Times(3, func(i int) string {
	return strconv.FormatInt(int64(i), 10)
})

fmt.Printf("%v", result)
Output:

[0 1 2]

func ToAnySlice

func ToAnySlice[T any](collection []T) []any

ToAnySlice returns a slice with all elements mapped to `any` type

func ToPtr

func ToPtr[T any](x T) *T

ToPtr returns a pointer copy of value.

func ToSlicePtr

func ToSlicePtr[T any](collection []T) []*T

ToSlicePtr returns a slice of pointer copy of value.

func Try

func Try(callback func() error) (ok bool)

Try calls the function and return false in case of error.

Example
ok1 := Try(func() error {
	return nil
})
ok2 := Try(func() error {
	return fmt.Errorf("my error")
})
ok3 := Try(func() error {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func Try0

func Try0(callback func()) bool

Try0 has the same behavior as Try, but callback returns no variable. Play: https://go.dev/play/p/mTyyWUvn9u4

func Try1

func Try1(callback func() error) bool

Try1 is an alias to Try. Play: https://go.dev/play/p/mTyyWUvn9u4

Example
ok1 := Try1(func() error {
	return nil
})
ok2 := Try1(func() error {
	return fmt.Errorf("my error")
})
ok3 := Try1(func() error {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func Try2

func Try2[T any](callback func() (T, error)) bool

Try2 has the same behavior as Try, but callback returns 2 variables. Play: https://go.dev/play/p/mTyyWUvn9u4

Example
ok1 := Try2(func() (int, error) {
	return 42, nil
})
ok2 := Try2(func() (int, error) {
	return 42, fmt.Errorf("my error")
})
ok3 := Try2(func() (int, error) {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func Try3

func Try3[T, R any](callback func() (T, R, error)) bool

Try3 has the same behavior as Try, but callback returns 3 variables. Play: https://go.dev/play/p/mTyyWUvn9u4

Example
ok1 := Try3(func() (int, string, error) {
	return 42, "foobar", nil
})
ok2 := Try3(func() (int, string, error) {
	return 42, "foobar", fmt.Errorf("my error")
})
ok3 := Try3(func() (int, string, error) {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func Try4

func Try4[T, R, S any](callback func() (T, R, S, error)) bool

Try4 has the same behavior as Try, but callback returns 4 variables. Play: https://go.dev/play/p/mTyyWUvn9u4

Example
ok1 := Try4(func() (int, string, float64, error) {
	return 42, "foobar", 4.2, nil
})
ok2 := Try4(func() (int, string, float64, error) {
	return 42, "foobar", 4.2, fmt.Errorf("my error")
})
ok3 := Try4(func() (int, string, float64, error) {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func Try5

func Try5[T, R, S, Q any](callback func() (T, R, S, Q, error)) bool

Try5 has the same behavior as Try, but callback returns 5 variables. Play: https://go.dev/play/p/mTyyWUvn9u4

Example
ok1 := Try5(func() (int, string, float64, bool, error) {
	return 42, "foobar", 4.2, true, nil
})
ok2 := Try5(func() (int, string, float64, bool, error) {
	return 42, "foobar", 4.2, true, fmt.Errorf("my error")
})
ok3 := Try5(func() (int, string, float64, bool, error) {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func Try6

func Try6[T, R, S, Q, U any](callback func() (T, R, S, Q, U, error)) bool

Try6 has the same behavior as Try, but callback returns 6 variables. Play: https://go.dev/play/p/mTyyWUvn9u4

Example
ok1 := Try6(func() (int, string, float64, bool, foo, error) {
	return 42, "foobar", 4.2, true, foo{}, nil
})
ok2 := Try6(func() (int, string, float64, bool, foo, error) {
	return 42, "foobar", 4.2, true, foo{}, fmt.Errorf("my error")
})
ok3 := Try6(func() (int, string, float64, bool, foo, error) {
	panic("my error")
})

fmt.Printf("%v\n", ok1)
fmt.Printf("%v\n", ok2)
fmt.Printf("%v\n", ok3)
Output:

true
false
false

func TryCatch

func TryCatch(callback func() error, catch func())

TryCatch has the same behavior as Try, but calls the catch function in case of error. Play: https://go.dev/play/p/PnOON-EqBiU

func TryCatchWithErrorValue

func TryCatchWithErrorValue(callback func() error, catch func(any))

TryCatchWithErrorValue has the same behavior as TryWithErrorValue, but calls the catch function in case of error. Play: https://go.dev/play/p/8Pc9gwX_GZO

Example
TryCatchWithErrorValue(
	func() error {
		panic("trigger an error")
	},
	func(err any) {
		fmt.Printf("catch: %s", err)
	},
)
Output:

catch: trigger an error

func TryOr

func TryOr[A any](callback func() (A, error), fallbackA A) (A, bool)

TryOr has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, ok1 := TryOr(func() (int, error) {
	return 42, nil
}, 21)
value2, ok2 := TryOr(func() (int, error) {
	return 42, fmt.Errorf("my error")
}, 21)
value3, ok3 := TryOr(func() (int, error) {
	panic("my error")
}, 21)

fmt.Printf("%v %v\n", value1, ok1)
fmt.Printf("%v %v\n", value2, ok2)
fmt.Printf("%v %v\n", value3, ok3)
Output:

42 true
21 false
21 false

func TryOr1

func TryOr1[A any](callback func() (A, error), fallbackA A) (A, bool)

TryOr1 has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, ok1 := TryOr1(func() (int, error) {
	return 42, nil
}, 21)
value2, ok2 := TryOr1(func() (int, error) {
	return 42, fmt.Errorf("my error")
}, 21)
value3, ok3 := TryOr1(func() (int, error) {
	panic("my error")
}, 21)

fmt.Printf("%v %v\n", value1, ok1)
fmt.Printf("%v %v\n", value2, ok2)
fmt.Printf("%v %v\n", value3, ok3)
Output:

42 true
21 false
21 false

func TryOr2

func TryOr2[A, B any](callback func() (A, B, error), fallbackA A, fallbackB B) (A, B, bool)

TryOr2 has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, value2, ok3 := TryOr2(func() (int, string, error) {
	panic("my error")
}, 21, "hello")

fmt.Printf("%v %v %v\n", value1, value2, ok3)
Output:

21 hello false

func TryOr3

func TryOr3[A, B, C any](callback func() (A, B, C, error), fallbackA A, fallbackB B, fallbackC C) (A, B, C, bool)

TryOr3 has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, value2, value3, ok3 := TryOr3(func() (int, string, bool, error) {
	panic("my error")
}, 21, "hello", false)

fmt.Printf("%v %v %v %v\n", value1, value2, value3, ok3)
Output:

21 hello false false

func TryOr4

func TryOr4[A, B, C, D any](callback func() (A, B, C, D, error), fallbackA A, fallbackB B, fallbackC C, fallbackD D) (A, B, C, D, bool)

TryOr4 has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, value2, value3, value4, ok3 := TryOr4(func() (int, string, bool, foo, error) {
	panic("my error")
}, 21, "hello", false, foo{bar: "bar"})

fmt.Printf("%v %v %v %v %v\n", value1, value2, value3, value4, ok3)
Output:

21 hello false {bar} false

func TryOr5

func TryOr5[A, B, C, D, E any](callback func() (A, B, C, D, E, error), fallbackA A, fallbackB B, fallbackC C, fallbackD D, fallbackE E) (A, B, C, D, E, bool)

TryOr5 has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, value2, value3, value4, value5, ok3 := TryOr5(func() (int, string, bool, foo, float64, error) {
	panic("my error")
}, 21, "hello", false, foo{bar: "bar"}, 4.2)

fmt.Printf("%v %v %v %v %v %v\n", value1, value2, value3, value4, value5, ok3)
Output:

21 hello false {bar} 4.2 false

func TryOr6

func TryOr6[A, B, C, D, E, F any](callback func() (A, B, C, D, E, F, error), fallbackA A, fallbackB B, fallbackC C, fallbackD D, fallbackE E, fallbackF F) (A, B, C, D, E, F, bool)

TryOr6 has the same behavior as Must, but returns a default value in case of error. Play: https://go.dev/play/p/B4F7Wg2Zh9X

Example
value1, value2, value3, value4, value5, value6, ok3 := TryOr6(func() (int, string, bool, foo, float64, string, error) {
	panic("my error")
}, 21, "hello", false, foo{bar: "bar"}, 4.2, "world")

fmt.Printf("%v %v %v %v %v %v %v\n", value1, value2, value3, value4, value5, value6, ok3)
Output:

21 hello false {bar} 4.2 world false

func TryWithErrorValue

func TryWithErrorValue(callback func() error) (errorValue any, ok bool)

TryWithErrorValue has the same behavior as Try, but also returns value passed to panic. Play: https://go.dev/play/p/Kc7afQIT2Fs

Example
err1, ok1 := TryWithErrorValue(func() error {
	return nil
})
err2, ok2 := TryWithErrorValue(func() error {
	return fmt.Errorf("my error")
})
err3, ok3 := TryWithErrorValue(func() error {
	panic("my error")
})

fmt.Printf("%v %v\n", err1, ok1)
fmt.Printf("%v %v\n", err2, ok2)
fmt.Printf("%v %v\n", err3, ok3)
Output:

<nil> true
my error false
my error false

func Union

func Union[T comparable, Slice ~[]T](lists ...Slice) Slice

Union returns all distinct elements from given collections. result returns will not change the order of elements relatively.

func Uniq

func Uniq[T comparable, Slice ~[]T](collection Slice) Slice

Uniq returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array. Play: https://go.dev/play/p/DTzbeXZ6iEN

Example
list := []int{1, 2, 2, 1}

result := Uniq(list)

fmt.Printf("%v", result)
Output:

[1 2]

func UniqBy

func UniqBy[T any, U comparable, Slice ~[]T](collection Slice, iteratee func(item T) U) Slice

UniqBy returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array. It accepts `iteratee` which is invoked for each element in array to generate the criterion by which uniqueness is computed. Play: https://go.dev/play/p/g42Z3QSb53u

Example
list := []int{0, 1, 2, 3, 4, 5}

result := UniqBy(list, func(i int) int {
	return i % 3
})

fmt.Printf("%v", result)
Output:

[0 1 2]

func UniqKeys

func UniqKeys[K comparable, V any](in ...map[K]V) []K

UniqKeys creates an array of unique keys in the map. Play: https://go.dev/play/p/TPKAb6ILdHk

Example
kv := map[string]int{"foo": 1, "bar": 2}
kv2 := map[string]int{"bar": 3}

result := UniqKeys(kv, kv2)
sort.Strings(result)
fmt.Printf("%v", result)
Output:

[bar foo]

func UniqMap

func UniqMap[T any, R comparable](collection []T, iteratee func(item T, index int) R) []R

UniqMap manipulates a slice and transforms it to a slice of another type with unique values.

Example
type User struct {
	Name string
	Age  int
}
users := []User{{Name: "Alex", Age: 10}, {Name: "Alex", Age: 12}, {Name: "Bob", Age: 11}, {Name: "Alice", Age: 20}}

result := UniqMap(users, func(u User, index int) string {
	return u.Name
})

fmt.Printf("%v", result)
Output:

[Alex Bob Alice]

func UniqValues

func UniqValues[K comparable, V comparable](in ...map[K]V) []V

UniqValues creates an array of unique values in the map. Play: https://go.dev/play/p/nf6bXMh7rM3

Example
kv := map[string]int{"foo": 1, "bar": 2}
kv2 := map[string]int{"baz": 2}

result := UniqValues(kv, kv2)

sort.Ints(result)
fmt.Printf("%v", result)
Output:

[1 2]

func Unpack2

func Unpack2[A, B any](tuple Tuple2[A, B]) (A, B)

Unpack2 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b := Unpack2(T2("hello", 2))
fmt.Printf("%v %v", a, b)
Output:

hello 2

func Unpack3

func Unpack3[A, B, C any](tuple Tuple3[A, B, C]) (A, B, C)

Unpack3 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c := Unpack3(T3("hello", 2, true))
fmt.Printf("%v %v %v", a, b, c)
Output:

hello 2 true

func Unpack4

func Unpack4[A, B, C, D any](tuple Tuple4[A, B, C, D]) (A, B, C, D)

Unpack4 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c, d := Unpack4(T4("hello", 2, true, foo{bar: "bar"}))
fmt.Printf("%v %v %v %v", a, b, c, d)
Output:

hello 2 true {bar}

func Unpack5

func Unpack5[A, B, C, D, E any](tuple Tuple5[A, B, C, D, E]) (A, B, C, D, E)

Unpack5 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c, d, e := Unpack5(T5("hello", 2, true, foo{bar: "bar"}, 4.2))
fmt.Printf("%v %v %v %v %v", a, b, c, d, e)
Output:

hello 2 true {bar} 4.2

func Unpack6

func Unpack6[A, B, C, D, E, F any](tuple Tuple6[A, B, C, D, E, F]) (A, B, C, D, E, F)

Unpack6 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c, d, e, f := Unpack6(T6("hello", 2, true, foo{bar: "bar"}, 4.2, "plop"))
fmt.Printf("%v %v %v %v %v %v", a, b, c, d, e, f)
Output:

hello 2 true {bar} 4.2 plop

func Unpack7

func Unpack7[A, B, C, D, E, F, G any](tuple Tuple7[A, B, C, D, E, F, G]) (A, B, C, D, E, F, G)

Unpack7 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c, d, e, f, g := Unpack7(T7("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false))
fmt.Printf("%v %v %v %v %v %v %v", a, b, c, d, e, f, g)
Output:

hello 2 true {bar} 4.2 plop false

func Unpack8

func Unpack8[A, B, C, D, E, F, G, H any](tuple Tuple8[A, B, C, D, E, F, G, H]) (A, B, C, D, E, F, G, H)

Unpack8 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c, d, e, f, g, h := Unpack8(T8("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false, 42))
fmt.Printf("%v %v %v %v %v %v %v %v", a, b, c, d, e, f, g, h)
Output:

hello 2 true {bar} 4.2 plop false 42

func Unpack9

func Unpack9[A, B, C, D, E, F, G, H, I any](tuple Tuple9[A, B, C, D, E, F, G, H, I]) (A, B, C, D, E, F, G, H, I)

Unpack9 returns values contained in tuple. Play: https://go.dev/play/p/xVP_k0kJ96W

Example
a, b, c, d, e, f, g, h, i := Unpack9(T9("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false, 42, "hello world"))
fmt.Printf("%v %v %v %v %v %v %v %v %v", a, b, c, d, e, f, g, h, i)
Output:

hello 2 true {bar} 4.2 plop false 42 hello world

func Unzip2

func Unzip2[A, B any](tuples []Tuple2[A, B]) ([]A, []B)

Unzip2 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b := Unzip2([]Tuple2[string, int]{T2("hello", 2)})
fmt.Printf("%v %v", a, b)
Output:

[hello] [2]

func Unzip3

func Unzip3[A, B, C any](tuples []Tuple3[A, B, C]) ([]A, []B, []C)

Unzip3 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c := Unzip3([]Tuple3[string, int, bool]{T3("hello", 2, true)})
fmt.Printf("%v %v %v", a, b, c)
Output:

[hello] [2] [true]

func Unzip4

func Unzip4[A, B, C, D any](tuples []Tuple4[A, B, C, D]) ([]A, []B, []C, []D)

Unzip4 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c, d := Unzip4([]Tuple4[string, int, bool, foo]{T4("hello", 2, true, foo{bar: "bar"})})
fmt.Printf("%v %v %v %v", a, b, c, d)
Output:

[hello] [2] [true] [{bar}]

func Unzip5

func Unzip5[A, B, C, D, E any](tuples []Tuple5[A, B, C, D, E]) ([]A, []B, []C, []D, []E)

Unzip5 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c, d, e := Unzip5([]Tuple5[string, int, bool, foo, float64]{T5("hello", 2, true, foo{bar: "bar"}, 4.2)})
fmt.Printf("%v %v %v %v %v", a, b, c, d, e)
Output:

[hello] [2] [true] [{bar}] [4.2]

func Unzip6

func Unzip6[A, B, C, D, E, F any](tuples []Tuple6[A, B, C, D, E, F]) ([]A, []B, []C, []D, []E, []F)

Unzip6 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c, d, e, f := Unzip6([]Tuple6[string, int, bool, foo, float64, string]{T6("hello", 2, true, foo{bar: "bar"}, 4.2, "plop")})
fmt.Printf("%v %v %v %v %v %v", a, b, c, d, e, f)
Output:

[hello] [2] [true] [{bar}] [4.2] [plop]

func Unzip7

func Unzip7[A, B, C, D, E, F, G any](tuples []Tuple7[A, B, C, D, E, F, G]) ([]A, []B, []C, []D, []E, []F, []G)

Unzip7 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c, d, e, f, g := Unzip7([]Tuple7[string, int, bool, foo, float64, string, bool]{T7("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false)})
fmt.Printf("%v %v %v %v %v %v %v", a, b, c, d, e, f, g)
Output:

[hello] [2] [true] [{bar}] [4.2] [plop] [false]

func Unzip8

func Unzip8[A, B, C, D, E, F, G, H any](tuples []Tuple8[A, B, C, D, E, F, G, H]) ([]A, []B, []C, []D, []E, []F, []G, []H)

Unzip8 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c, d, e, f, g, h := Unzip8([]Tuple8[string, int, bool, foo, float64, string, bool, int]{T8("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false, 42)})
fmt.Printf("%v %v %v %v %v %v %v %v", a, b, c, d, e, f, g, h)
Output:

[hello] [2] [true] [{bar}] [4.2] [plop] [false] [42]

func Unzip9

func Unzip9[A, B, C, D, E, F, G, H, I any](tuples []Tuple9[A, B, C, D, E, F, G, H, I]) ([]A, []B, []C, []D, []E, []F, []G, []H, []I)

Unzip9 accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. Play: https://go.dev/play/p/ciHugugvaAW

Example
a, b, c, d, e, f, g, h, i := Unzip9([]Tuple9[string, int, bool, foo, float64, string, bool, int, string]{T9("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false, 42, "hello world")})
fmt.Printf("%v %v %v %v %v %v %v %v %v", a, b, c, d, e, f, g, h, i)
Output:

[hello] [2] [true] [{bar}] [4.2] [plop] [false] [42] [hello world]

func UnzipBy2

func UnzipBy2[In any, A any, B any](items []In, iteratee func(In) (a A, b B)) ([]A, []B)

UnzipBy2 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy3

func UnzipBy3[In any, A any, B any, C any](items []In, iteratee func(In) (a A, b B, c C)) ([]A, []B, []C)

UnzipBy3 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy4

func UnzipBy4[In any, A any, B any, C any, D any](items []In, iteratee func(In) (a A, b B, c C, d D)) ([]A, []B, []C, []D)

UnzipBy4 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy5

func UnzipBy5[In any, A any, B any, C any, D any, E any](items []In, iteratee func(In) (a A, b B, c C, d D, e E)) ([]A, []B, []C, []D, []E)

UnzipBy5 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy6

func UnzipBy6[In any, A any, B any, C any, D any, E any, F any](items []In, iteratee func(In) (a A, b B, c C, d D, e E, f F)) ([]A, []B, []C, []D, []E, []F)

UnzipBy6 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy7

func UnzipBy7[In any, A any, B any, C any, D any, E any, F any, G any](items []In, iteratee func(In) (a A, b B, c C, d D, e E, f F, g G)) ([]A, []B, []C, []D, []E, []F, []G)

UnzipBy7 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy8

func UnzipBy8[In any, A any, B any, C any, D any, E any, F any, G any, H any](items []In, iteratee func(In) (a A, b B, c C, d D, e E, f F, g G, h H)) ([]A, []B, []C, []D, []E, []F, []G, []H)

UnzipBy8 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func UnzipBy9

func UnzipBy9[In any, A any, B any, C any, D any, E any, F any, G any, H any, I any](items []In, iteratee func(In) (a A, b B, c C, d D, e E, f F, g G, h H, i I)) ([]A, []B, []C, []D, []E, []F, []G, []H, []I)

UnzipBy9 iterates over a collection and creates an array regrouping the elements to their pre-zip configuration.

func Validate

func Validate(ok bool, format string, args ...any) error

Validate is a helper that creates an error when a condition is not met. Play: https://go.dev/play/p/vPyh51XpCBt

Example
i := 42

err1 := Validate(i < 0, "expected %d < 0", i)
err2 := Validate(i > 0, "expected %d > 0", i)

fmt.Printf("%v\n%v", err1, err2)
Output:

expected 42 < 0
<nil>

func ValueOr

func ValueOr[K comparable, V any](in map[K]V, key K, fallback V) V

ValueOr returns the value of the given key or the fallback value if the key is not present. Play: https://go.dev/play/p/bAq9mHErB4V

Example
kv := map[string]int{"foo": 1, "bar": 2}

result1 := ValueOr(kv, "foo", 42)
result2 := ValueOr(kv, "baz", 42)

fmt.Printf("%v %v", result1, result2)
Output:

1 42

func Values

func Values[K comparable, V any](in ...map[K]V) []V

Values creates an array of the map values. Play: https://go.dev/play/p/nnRTQkzQfF6

Example
kv := map[string]int{"foo": 1, "bar": 2}
kv2 := map[string]int{"baz": 3}

result := Values(kv, kv2)

sort.Ints(result)
fmt.Printf("%v", result)
Output:

[1 2 3]

func WaitFor

func WaitFor(condition func(i int) bool, timeout time.Duration, heartbeatDelay time.Duration) (totalIterations int, elapsed time.Duration, conditionFound bool)

WaitFor runs periodically until a condition is validated.

func WaitForWithContext

func WaitForWithContext(ctx context.Context, condition func(ctx context.Context, currentIteration int) bool, timeout time.Duration, heartbeatDelay time.Duration) (totalIterations int, elapsed time.Duration, conditionFound bool)

WaitForWithContext runs periodically until a condition is validated or context is canceled.

func Without

func Without[T comparable, Slice ~[]T](collection Slice, exclude ...T) Slice

Without returns slice excluding all given values.

func WithoutBy

func WithoutBy[T any, K comparable](collection []T, iteratee func(item T) K, exclude ...K) []T

WithoutBy filters a slice by excluding elements whose extracted keys match any in the exclude list. It returns a new slice containing only the elements whose keys are not in the exclude list.

Example
type User struct {
	ID   int
	Name string
}
// original users
users := []User{
	{ID: 1, Name: "Alice"},
	{ID: 2, Name: "Bob"},
	{ID: 3, Name: "Charlie"},
}

// exclude users with IDs 2 and 3
excludedIDs := []int{2, 3}

// extract function to get the user ID
extractID := func(user User) int {
	return user.ID
}

// filtering users
filteredUsers := WithoutBy(users, extractID, excludedIDs...)

// output the filtered users
fmt.Printf("%v\n", filteredUsers)
Output:

[{1 Alice}]

func WithoutEmpty deprecated

func WithoutEmpty[T comparable, Slice ~[]T](collection Slice) Slice

WithoutEmpty returns slice excluding zero values.

Deprecated: Use lo.Compact instead.

func WithoutNth

func WithoutNth[T comparable, Slice ~[]T](collection Slice, nths ...int) Slice

WithoutNth returns slice excluding nth value.

func Words

func Words(str string) []string

Words splits string into an array of its words.

func ZipBy2

func ZipBy2[A any, B any, Out any](a []A, b []B, iteratee func(a A, b B) Out) []Out

ZipBy2 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy3

func ZipBy3[A any, B any, C any, Out any](a []A, b []B, c []C, iteratee func(a A, b B, c C) Out) []Out

ZipBy3 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy4

func ZipBy4[A any, B any, C any, D any, Out any](a []A, b []B, c []C, d []D, iteratee func(a A, b B, c C, d D) Out) []Out

ZipBy4 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy5

func ZipBy5[A any, B any, C any, D any, E any, Out any](a []A, b []B, c []C, d []D, e []E, iteratee func(a A, b B, c C, d D, e E) Out) []Out

ZipBy5 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy6

func ZipBy6[A any, B any, C any, D any, E any, F any, Out any](a []A, b []B, c []C, d []D, e []E, f []F, iteratee func(a A, b B, c C, d D, e E, f F) Out) []Out

ZipBy6 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy7

func ZipBy7[A any, B any, C any, D any, E any, F any, G any, Out any](a []A, b []B, c []C, d []D, e []E, f []F, g []G, iteratee func(a A, b B, c C, d D, e E, f F, g G) Out) []Out

ZipBy7 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy8

func ZipBy8[A any, B any, C any, D any, E any, F any, G any, H any, Out any](a []A, b []B, c []C, d []D, e []E, f []F, g []G, h []H, iteratee func(a A, b B, c C, d D, e E, f F, g G, h H) Out) []Out

ZipBy8 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

func ZipBy9

func ZipBy9[A any, B any, C any, D any, E any, F any, G any, H any, I any, Out any](a []A, b []B, c []C, d []D, e []E, f []F, g []G, h []H, i []I, iteratee func(a A, b B, c C, d D, e E, f F, g G, h H, i I) Out) []Out

ZipBy9 creates a slice of transformed elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value.

Types

type Clonable

type Clonable[T any] interface {
	Clone() T
}

Clonable defines a constraint of types having Clone() T method.

type DispatchingStrategy

type DispatchingStrategy[T any] func(msg T, index uint64, channels []<-chan T) int

func DispatchingStrategyWeightedRandom

func DispatchingStrategyWeightedRandom[T any](weights []int) DispatchingStrategy[T]

DispatchingStrategyWeightedRandom distributes messages in a weighted manner. If the channel capacity is exceeded, another random channel will be selected and so on.

type Entry

type Entry[K comparable, V any] struct {
	Key   K
	Value V
}

Entry defines a key/value pairs.

func Entries

func Entries[K comparable, V any](in map[K]V) []Entry[K, V]

Entries transforms a map into array of key/value pairs. Play:

Example
kv := map[string]int{"foo": 1, "bar": 2, "baz": 3}

result := Entries(kv)

sort.Slice(result, func(i, j int) bool {
	return strings.Compare(result[i].Key, result[j].Key) < 0
})
fmt.Printf("%v", result)
Output:

[{bar 2} {baz 3} {foo 1}]

func ToPairs

func ToPairs[K comparable, V any](in map[K]V) []Entry[K, V]

ToPairs transforms a map into array of key/value pairs. Alias of Entries(). Play: https://go.dev/play/p/3Dhgx46gawJ

type Transaction

type Transaction[T any] struct {
	// contains filtered or unexported fields
}

Transaction implements a Saga pattern

Example
transaction := NewTransaction[int]().
	Then(
		func(state int) (int, error) {
			fmt.Println("step 1")
			return state + 10, nil
		},
		func(state int) int {
			fmt.Println("rollback 1")
			return state - 10
		},
	).
	Then(
		func(state int) (int, error) {
			fmt.Println("step 2")
			return state + 15, nil
		},
		func(state int) int {
			fmt.Println("rollback 2")
			return state - 15
		},
	).
	Then(
		func(state int) (int, error) {
			fmt.Println("step 3")

			if true {
				return state, fmt.Errorf("error")
			}

			return state + 42, nil
		},
		func(state int) int {
			fmt.Println("rollback 3")
			return state - 42
		},
	)

_, _ = transaction.Process(-5)
Output:

step 1
step 2
step 3
rollback 2
rollback 1
Example (Error)
transaction := NewTransaction[int]().
	Then(
		func(state int) (int, error) {
			return state + 10, nil
		},
		func(state int) int {
			return state - 10
		},
	).
	Then(
		func(state int) (int, error) {
			return state, fmt.Errorf("error")
		},
		func(state int) int {
			return state - 15
		},
	).
	Then(
		func(state int) (int, error) {
			return state + 42, nil
		},
		func(state int) int {
			return state - 42
		},
	)

state, err := transaction.Process(-5)

fmt.Println(state)
fmt.Println(err)
Output:

-5
error
Example (Ok)
transaction := NewTransaction[int]().
	Then(
		func(state int) (int, error) {
			return state + 10, nil
		},
		func(state int) int {
			return state - 10
		},
	).
	Then(
		func(state int) (int, error) {
			return state + 15, nil
		},
		func(state int) int {
			return state - 15
		},
	).
	Then(
		func(state int) (int, error) {
			return state + 42, nil
		},
		func(state int) int {
			return state - 42
		},
	)

state, err := transaction.Process(-5)

fmt.Println(state)
fmt.Println(err)
Output:

62
<nil>

func NewTransaction

func NewTransaction[T any]() *Transaction[T]

NewTransaction instantiate a new transaction.

func (*Transaction[T]) Process

func (t *Transaction[T]) Process(state T) (T, error)

Process runs the Transaction steps and rollbacks in case of errors.

func (*Transaction[T]) Then

func (t *Transaction[T]) Then(exec func(T) (T, error), onRollback func(T) T) *Transaction[T]

Then adds a step to the chain of callbacks. It returns the same Transaction.

type Tuple2

type Tuple2[A, B any] struct {
	A A
	B B
}

Tuple2 is a group of 2 elements (pair).

func CrossJoin2

func CrossJoin2[A, B any](listA []A, listB []B) []Tuple2[A, B]

CrossJoin2 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin2([]string{"a", "b"}, []int{1, 2, 3, 4})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1}
{a 2}
{a 3}
{a 4}
{b 1}
{b 2}
{b 3}
{b 4}

func T2

func T2[A, B any](a A, b B) Tuple2[A, B]

T2 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T2("hello", 2)
fmt.Printf("%v %v", result.A, result.B)
Output:

hello 2

func Zip2

func Zip2[A, B any](a []A, b []B) []Tuple2[A, B]

Zip2 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip2([]string{"hello"}, []int{2})
fmt.Printf("%v", result)
Output:

[{hello 2}]

func (Tuple2[A, B]) Unpack

func (t Tuple2[A, B]) Unpack() (A, B)

Unpack returns values contained in tuple.

type Tuple3

type Tuple3[A, B, C any] struct {
	A A
	B B
	C C
}

Tuple3 is a group of 3 elements.

func CrossJoin3

func CrossJoin3[A, B, C any](listA []A, listB []B, listC []C) []Tuple3[A, B, C]

CrossJoin3 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin3([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true}
{a 1 false}
{a 2 true}
{a 2 false}
{a 3 true}
{a 3 false}
{a 4 true}
{a 4 false}
{b 1 true}
{b 1 false}
{b 2 true}
{b 2 false}
{b 3 true}
{b 3 false}
{b 4 true}
{b 4 false}

func T3

func T3[A, B, C any](a A, b B, c C) Tuple3[A, B, C]

T3 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T3("hello", 2, true)
fmt.Printf("%v %v %v", result.A, result.B, result.C)
Output:

hello 2 true

func Zip3

func Zip3[A, B, C any](a []A, b []B, c []C) []Tuple3[A, B, C]

Zip3 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip3([]string{"hello"}, []int{2}, []bool{true})
fmt.Printf("%v", result)
Output:

[{hello 2 true}]

func (Tuple3[A, B, C]) Unpack

func (t Tuple3[A, B, C]) Unpack() (A, B, C)

Unpack returns values contained in tuple.

type Tuple4

type Tuple4[A, B, C, D any] struct {
	A A
	B B
	C C
	D D
}

Tuple4 is a group of 4 elements.

func CrossJoin4

func CrossJoin4[A, B, C, D any](listA []A, listB []B, listC []C, listD []D) []Tuple4[A, B, C, D]

CrossJoin4 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin4([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true {bar}}
{a 1 false {bar}}
{a 2 true {bar}}
{a 2 false {bar}}
{a 3 true {bar}}
{a 3 false {bar}}
{a 4 true {bar}}
{a 4 false {bar}}
{b 1 true {bar}}
{b 1 false {bar}}
{b 2 true {bar}}
{b 2 false {bar}}
{b 3 true {bar}}
{b 3 false {bar}}
{b 4 true {bar}}
{b 4 false {bar}}

func T4

func T4[A, B, C, D any](a A, b B, c C, d D) Tuple4[A, B, C, D]

T4 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T4("hello", 2, true, foo{bar: "bar"})
fmt.Printf("%v %v %v %v", result.A, result.B, result.C, result.D)
Output:

hello 2 true {bar}

func Zip4

func Zip4[A, B, C, D any](a []A, b []B, c []C, d []D) []Tuple4[A, B, C, D]

Zip4 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip4([]string{"hello"}, []int{2}, []bool{true}, []foo{{bar: "bar"}})
fmt.Printf("%v", result)
Output:

[{hello 2 true {bar}}]

func (Tuple4[A, B, C, D]) Unpack

func (t Tuple4[A, B, C, D]) Unpack() (A, B, C, D)

Unpack returns values contained in tuple.

type Tuple5

type Tuple5[A, B, C, D, E any] struct {
	A A
	B B
	C C
	D D
	E E
}

Tuple5 is a group of 5 elements.

func CrossJoin5

func CrossJoin5[A, B, C, D, E any](listA []A, listB []B, listC []C, listD []D, listE []E) []Tuple5[A, B, C, D, E]

CrossJoin5 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin5([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true {bar} 4.2}
{a 1 false {bar} 4.2}
{a 2 true {bar} 4.2}
{a 2 false {bar} 4.2}
{a 3 true {bar} 4.2}
{a 3 false {bar} 4.2}
{a 4 true {bar} 4.2}
{a 4 false {bar} 4.2}
{b 1 true {bar} 4.2}
{b 1 false {bar} 4.2}
{b 2 true {bar} 4.2}
{b 2 false {bar} 4.2}
{b 3 true {bar} 4.2}
{b 3 false {bar} 4.2}
{b 4 true {bar} 4.2}
{b 4 false {bar} 4.2}

func T5

func T5[A, B, C, D, E any](a A, b B, c C, d D, e E) Tuple5[A, B, C, D, E]

T5 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T5("hello", 2, true, foo{bar: "bar"}, 4.2)
fmt.Printf("%v %v %v %v %v", result.A, result.B, result.C, result.D, result.E)
Output:

hello 2 true {bar} 4.2

func Zip5

func Zip5[A, B, C, D, E any](a []A, b []B, c []C, d []D, e []E) []Tuple5[A, B, C, D, E]

Zip5 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip5([]string{"hello"}, []int{2}, []bool{true}, []foo{{bar: "bar"}}, []float64{4.2})
fmt.Printf("%v", result)
Output:

[{hello 2 true {bar} 4.2}]

func (Tuple5[A, B, C, D, E]) Unpack

func (t Tuple5[A, B, C, D, E]) Unpack() (A, B, C, D, E)

Unpack returns values contained in tuple.

type Tuple6

type Tuple6[A, B, C, D, E, F any] struct {
	A A
	B B
	C C
	D D
	E E
	F F
}

Tuple6 is a group of 6 elements.

func CrossJoin6

func CrossJoin6[A, B, C, D, E, F any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F) []Tuple6[A, B, C, D, E, F]

CrossJoin6 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin6([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true {bar} 4.2 plop}
{a 1 false {bar} 4.2 plop}
{a 2 true {bar} 4.2 plop}
{a 2 false {bar} 4.2 plop}
{a 3 true {bar} 4.2 plop}
{a 3 false {bar} 4.2 plop}
{a 4 true {bar} 4.2 plop}
{a 4 false {bar} 4.2 plop}
{b 1 true {bar} 4.2 plop}
{b 1 false {bar} 4.2 plop}
{b 2 true {bar} 4.2 plop}
{b 2 false {bar} 4.2 plop}
{b 3 true {bar} 4.2 plop}
{b 3 false {bar} 4.2 plop}
{b 4 true {bar} 4.2 plop}
{b 4 false {bar} 4.2 plop}

func T6

func T6[A, B, C, D, E, F any](a A, b B, c C, d D, e E, f F) Tuple6[A, B, C, D, E, F]

T6 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T6("hello", 2, true, foo{bar: "bar"}, 4.2, "plop")
fmt.Printf("%v %v %v %v %v %v", result.A, result.B, result.C, result.D, result.E, result.F)
Output:

hello 2 true {bar} 4.2 plop

func Zip6

func Zip6[A, B, C, D, E, F any](a []A, b []B, c []C, d []D, e []E, f []F) []Tuple6[A, B, C, D, E, F]

Zip6 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip6([]string{"hello"}, []int{2}, []bool{true}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"})
fmt.Printf("%v", result)
Output:

[{hello 2 true {bar} 4.2 plop}]

func (Tuple6[A, B, C, D, E, F]) Unpack

func (t Tuple6[A, B, C, D, E, F]) Unpack() (A, B, C, D, E, F)

Unpack returns values contained in tuple.

type Tuple7

type Tuple7[A, B, C, D, E, F, G any] struct {
	A A
	B B
	C C
	D D
	E E
	F F
	G G
}

Tuple7 is a group of 7 elements.

func CrossJoin7

func CrossJoin7[A, B, C, D, E, F, G any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, listG []G) []Tuple7[A, B, C, D, E, F, G]

CrossJoin7 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin7([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true {bar} 4.2 plop false}
{a 1 false {bar} 4.2 plop false}
{a 2 true {bar} 4.2 plop false}
{a 2 false {bar} 4.2 plop false}
{a 3 true {bar} 4.2 plop false}
{a 3 false {bar} 4.2 plop false}
{a 4 true {bar} 4.2 plop false}
{a 4 false {bar} 4.2 plop false}
{b 1 true {bar} 4.2 plop false}
{b 1 false {bar} 4.2 plop false}
{b 2 true {bar} 4.2 plop false}
{b 2 false {bar} 4.2 plop false}
{b 3 true {bar} 4.2 plop false}
{b 3 false {bar} 4.2 plop false}
{b 4 true {bar} 4.2 plop false}
{b 4 false {bar} 4.2 plop false}

func T7

func T7[A, B, C, D, E, F, G any](a A, b B, c C, d D, e E, f F, g G) Tuple7[A, B, C, D, E, F, G]

T7 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T7("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false)
fmt.Printf("%v %v %v %v %v %v %v", result.A, result.B, result.C, result.D, result.E, result.F, result.G)
Output:

hello 2 true {bar} 4.2 plop false

func Zip7

func Zip7[A, B, C, D, E, F, G any](a []A, b []B, c []C, d []D, e []E, f []F, g []G) []Tuple7[A, B, C, D, E, F, G]

Zip7 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip7([]string{"hello"}, []int{2}, []bool{true}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false})
fmt.Printf("%v", result)
Output:

[{hello 2 true {bar} 4.2 plop false}]

func (Tuple7[A, B, C, D, E, F, G]) Unpack

func (t Tuple7[A, B, C, D, E, F, G]) Unpack() (A, B, C, D, E, F, G)

Unpack returns values contained in tuple.

type Tuple8

type Tuple8[A, B, C, D, E, F, G, H any] struct {
	A A
	B B
	C C
	D D
	E E
	F F
	G G
	H H
}

Tuple8 is a group of 8 elements.

func CrossJoin8

func CrossJoin8[A, B, C, D, E, F, G, H any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, listG []G, listH []H) []Tuple8[A, B, C, D, E, F, G, H]

CrossJoin8 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin8([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, []int{42})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true {bar} 4.2 plop false 42}
{a 1 false {bar} 4.2 plop false 42}
{a 2 true {bar} 4.2 plop false 42}
{a 2 false {bar} 4.2 plop false 42}
{a 3 true {bar} 4.2 plop false 42}
{a 3 false {bar} 4.2 plop false 42}
{a 4 true {bar} 4.2 plop false 42}
{a 4 false {bar} 4.2 plop false 42}
{b 1 true {bar} 4.2 plop false 42}
{b 1 false {bar} 4.2 plop false 42}
{b 2 true {bar} 4.2 plop false 42}
{b 2 false {bar} 4.2 plop false 42}
{b 3 true {bar} 4.2 plop false 42}
{b 3 false {bar} 4.2 plop false 42}
{b 4 true {bar} 4.2 plop false 42}
{b 4 false {bar} 4.2 plop false 42}

func T8

func T8[A, B, C, D, E, F, G, H any](a A, b B, c C, d D, e E, f F, g G, h H) Tuple8[A, B, C, D, E, F, G, H]

T8 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T8("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false, 42)
fmt.Printf("%v %v %v %v %v %v %v %v", result.A, result.B, result.C, result.D, result.E, result.F, result.G, result.H)
Output:

hello 2 true {bar} 4.2 plop false 42

func Zip8

func Zip8[A, B, C, D, E, F, G, H any](a []A, b []B, c []C, d []D, e []E, f []F, g []G, h []H) []Tuple8[A, B, C, D, E, F, G, H]

Zip8 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip8([]string{"hello"}, []int{2}, []bool{true}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, []int{42})
fmt.Printf("%v", result)
Output:

[{hello 2 true {bar} 4.2 plop false 42}]

func (Tuple8[A, B, C, D, E, F, G, H]) Unpack

func (t Tuple8[A, B, C, D, E, F, G, H]) Unpack() (A, B, C, D, E, F, G, H)

Unpack returns values contained in tuple.

type Tuple9

type Tuple9[A, B, C, D, E, F, G, H, I any] struct {
	A A
	B B
	C C
	D D
	E E
	F F
	G G
	H H
	I I
}

Tuple9 is a group of 9 elements.

func CrossJoin9

func CrossJoin9[A, B, C, D, E, F, G, H, I any](listA []A, listB []B, listC []C, listD []D, listE []E, listF []F, listG []G, listH []H, listI []I) []Tuple9[A, B, C, D, E, F, G, H, I]

CrossJoin9 combines every items from one list with every items from others. It is the cartesian product of lists received as arguments. It returns an empty list if a list is empty.

Example
result := CrossJoin9([]string{"a", "b"}, []int{1, 2, 3, 4}, []bool{true, false}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, []int{42}, []string{"hello world"})
for _, r := range result {
	fmt.Printf("%v\n", r)
}
Output:

{a 1 true {bar} 4.2 plop false 42 hello world}
{a 1 false {bar} 4.2 plop false 42 hello world}
{a 2 true {bar} 4.2 plop false 42 hello world}
{a 2 false {bar} 4.2 plop false 42 hello world}
{a 3 true {bar} 4.2 plop false 42 hello world}
{a 3 false {bar} 4.2 plop false 42 hello world}
{a 4 true {bar} 4.2 plop false 42 hello world}
{a 4 false {bar} 4.2 plop false 42 hello world}
{b 1 true {bar} 4.2 plop false 42 hello world}
{b 1 false {bar} 4.2 plop false 42 hello world}
{b 2 true {bar} 4.2 plop false 42 hello world}
{b 2 false {bar} 4.2 plop false 42 hello world}
{b 3 true {bar} 4.2 plop false 42 hello world}
{b 3 false {bar} 4.2 plop false 42 hello world}
{b 4 true {bar} 4.2 plop false 42 hello world}
{b 4 false {bar} 4.2 plop false 42 hello world}

func T9

func T9[A, B, C, D, E, F, G, H, I any](a A, b B, c C, d D, e E, f F, g G, h H, i I) Tuple9[A, B, C, D, E, F, G, H, I]

T9 creates a tuple from a list of values. Play: https://go.dev/play/p/IllL3ZO4BQm

Example
result := T9("hello", 2, true, foo{bar: "bar"}, 4.2, "plop", false, 42, "hello world")
fmt.Printf("%v %v %v %v %v %v %v %v %v", result.A, result.B, result.C, result.D, result.E, result.F, result.G, result.H, result.I)
Output:

hello 2 true {bar} 4.2 plop false 42 hello world

func Zip9

func Zip9[A, B, C, D, E, F, G, H, I any](a []A, b []B, c []C, d []D, e []E, f []F, g []G, h []H, i []I) []Tuple9[A, B, C, D, E, F, G, H, I]

Zip9 creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. Play: https://go.dev/play/p/jujaA6GaJTp

Example
result := Zip9([]string{"hello"}, []int{2}, []bool{true}, []foo{{bar: "bar"}}, []float64{4.2}, []string{"plop"}, []bool{false}, []int{42}, []string{"hello world"})
fmt.Printf("%v", result)
Output:

[{hello 2 true {bar} 4.2 plop false 42 hello world}]

func (Tuple9[A, B, C, D, E, F, G, H, I]) Unpack

func (t Tuple9[A, B, C, D, E, F, G, H, I]) Unpack() (A, B, C, D, E, F, G, H, I)

Unpack returns values contained in tuple.

type Zeroable

type Zeroable interface {
	IsZero() bool
}

Zeroable is an interface that can be used to check if a value is zero.

Directories

Path Synopsis
internal
constraints
Package constraints defines a set of useful constraints to be used with type parameters.
Package constraints defines a set of useful constraints to be used with type parameters.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL