cdk8splus22

package module
Version: v2.0.0-rc.137 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 2, 2022 License: Apache-2.0 Imports: 7 Imported by: 1

README ΒΆ

cdk8s+ (cdk8s-plus)

High level constructs for Kubernetes

cdk8s-plus-22 cdk8s-plus-23 cdk8s-plus-24

k8s version npm (JS/TS) PyPI (Python) Maven (Java) Go
1.22.0 Link Link Link Link
1.23.0 Link Link Link Link
1.24.0 Link Link Link Link

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. Built on top of the auto generated building blocks provided by cdk8s, this library includes a hand crafted construct for each native kubernetes object, exposing richer API's with reduced complexity.

πŸ“š Documentation

See cdk8s.io.

:raised_hand: Contributing

If you'd like to add a new feature or fix a bug, please visit CONTRIBUTING.md!

βš–οΈ License

This project is distributed under the Apache License, Version 2.0.

This module is part of the cdk8s project.

Documentation ΒΆ

Overview ΒΆ

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

cdk8s+ is a software development framework that provides high level abstractions for authoring Kubernetes applications. cdk8s-plus-22 synthesizes Kubernetes manifests for Kubernetes 1.22.0

Index ΒΆ

Constants ΒΆ

This section is empty.

Variables ΒΆ

This section is empty.

Functions ΒΆ

func AbstractPod_IsConstruct ΒΆ

func AbstractPod_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func AwsElasticBlockStorePersistentVolume_IsConstruct ΒΆ

func AwsElasticBlockStorePersistentVolume_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func AzureDiskPersistentVolume_IsConstruct ΒΆ

func AzureDiskPersistentVolume_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func BasicAuthSecret_IsConstruct ΒΆ

func BasicAuthSecret_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func ClusterRoleBinding_IsConstruct ΒΆ

func ClusterRoleBinding_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func ClusterRole_IsConstruct ΒΆ

func ClusterRole_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func ConfigMap_IsConstruct ΒΆ

func ConfigMap_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func CronJob_IsConstruct ΒΆ

func CronJob_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func DaemonSet_IsConstruct ΒΆ

func DaemonSet_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Deployment_IsConstruct ΒΆ

func Deployment_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func DockerConfigSecret_IsConstruct ΒΆ

func DockerConfigSecret_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func GCEPersistentDiskPersistentVolume_IsConstruct ΒΆ

func GCEPersistentDiskPersistentVolume_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Group_IsConstruct ΒΆ

func Group_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Ingress_IsConstruct ΒΆ

func Ingress_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Job_IsConstruct ΒΆ

func Job_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Namespace_IsConstruct ΒΆ

func Namespace_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Namespace_NAME_LABEL ΒΆ

func Namespace_NAME_LABEL() *string

func Namespaces_IsConstruct ΒΆ

func Namespaces_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func NetworkPolicyIpBlock_IsConstruct ΒΆ

func NetworkPolicyIpBlock_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func NetworkPolicy_IsConstruct ΒΆ

func NetworkPolicy_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func NewAbstractPod_Override ΒΆ

func NewAbstractPod_Override(a AbstractPod, scope constructs.Construct, id *string, props *AbstractPodProps)

func NewAwsElasticBlockStorePersistentVolume_Override ΒΆ

func NewAwsElasticBlockStorePersistentVolume_Override(a AwsElasticBlockStorePersistentVolume, scope constructs.Construct, id *string, props *AwsElasticBlockStorePersistentVolumeProps)

func NewAzureDiskPersistentVolume_Override ΒΆ

func NewAzureDiskPersistentVolume_Override(a AzureDiskPersistentVolume, scope constructs.Construct, id *string, props *AzureDiskPersistentVolumeProps)

func NewBasicAuthSecret_Override ΒΆ

func NewBasicAuthSecret_Override(b BasicAuthSecret, scope constructs.Construct, id *string, props *BasicAuthSecretProps)

func NewClusterRoleBinding_Override ΒΆ

func NewClusterRoleBinding_Override(c ClusterRoleBinding, scope constructs.Construct, id *string, props *ClusterRoleBindingProps)

func NewClusterRole_Override ΒΆ

func NewClusterRole_Override(c ClusterRole, scope constructs.Construct, id *string, props *ClusterRoleProps)

func NewConfigMap_Override ΒΆ

func NewConfigMap_Override(c ConfigMap, scope constructs.Construct, id *string, props *ConfigMapProps)

func NewContainerSecurityContext_Override ΒΆ

func NewContainerSecurityContext_Override(c ContainerSecurityContext, props *ContainerSecurityContextProps)

func NewContainer_Override ΒΆ

func NewContainer_Override(c Container, props *ContainerProps)

func NewCronJob_Override ΒΆ

func NewCronJob_Override(c CronJob, scope constructs.Construct, id *string, props *CronJobProps)

func NewDaemonSet_Override ΒΆ

func NewDaemonSet_Override(d DaemonSet, scope constructs.Construct, id *string, props *DaemonSetProps)

func NewDeployment_Override ΒΆ

func NewDeployment_Override(d Deployment, scope constructs.Construct, id *string, props *DeploymentProps)

func NewDockerConfigSecret_Override ΒΆ

func NewDockerConfigSecret_Override(d DockerConfigSecret, scope constructs.Construct, id *string, props *DockerConfigSecretProps)

func NewEnvFrom_Override ΒΆ

func NewEnvFrom_Override(e EnvFrom, configMap IConfigMap, prefix *string, sec ISecret)

func NewEnv_Override ΒΆ

func NewEnv_Override(e Env, sources *[]EnvFrom, variables *map[string]EnvValue)

func NewGCEPersistentDiskPersistentVolume_Override ΒΆ

func NewGCEPersistentDiskPersistentVolume_Override(g GCEPersistentDiskPersistentVolume, scope constructs.Construct, id *string, props *GCEPersistentDiskPersistentVolumeProps)

func NewIngress_Override ΒΆ

func NewIngress_Override(i Ingress, scope constructs.Construct, id *string, props *IngressProps)

func NewJob_Override ΒΆ

func NewJob_Override(j Job, scope constructs.Construct, id *string, props *JobProps)

func NewLabeledNode_Override ΒΆ

func NewLabeledNode_Override(l LabeledNode, labelSelector *[]NodeLabelQuery)

func NewNamedNode_Override ΒΆ

func NewNamedNode_Override(n NamedNode, name *string)

func NewNamespace_Override ΒΆ

func NewNamespace_Override(n Namespace, scope constructs.Construct, id *string, props *NamespaceProps)

func NewNamespaces_Override ΒΆ

func NewNamespaces_Override(n Namespaces, scope constructs.Construct, id *string, expressions *[]LabelExpression, names *[]*string, labels *map[string]*string)

func NewNetworkPolicy_Override ΒΆ

func NewNetworkPolicy_Override(n NetworkPolicy, scope constructs.Construct, id *string, props *NetworkPolicyProps)

func NewNode_Override ΒΆ

func NewNode_Override(n Node)

func NewPersistentVolumeClaim_Override ΒΆ

func NewPersistentVolumeClaim_Override(p PersistentVolumeClaim, scope constructs.Construct, id *string, props *PersistentVolumeClaimProps)

func NewPersistentVolume_Override ΒΆ

func NewPersistentVolume_Override(p PersistentVolume, scope constructs.Construct, id *string, props *PersistentVolumeProps)

func NewPodConnections_Override ΒΆ

func NewPodConnections_Override(p PodConnections, instance AbstractPod)

func NewPodDns_Override ΒΆ

func NewPodDns_Override(p PodDns, props *PodDnsProps)

func NewPodScheduling_Override ΒΆ

func NewPodScheduling_Override(p PodScheduling, instance AbstractPod)

func NewPodSecurityContext_Override ΒΆ

func NewPodSecurityContext_Override(p PodSecurityContext, props *PodSecurityContextProps)

func NewPod_Override ΒΆ

func NewPod_Override(p Pod, scope constructs.Construct, id *string, props *PodProps)

func NewPods_Override ΒΆ

func NewPods_Override(p Pods, scope constructs.Construct, id *string, expressions *[]LabelExpression, labels *map[string]*string, namespaces INamespaceSelector)

func NewResourcePermissions_Override ΒΆ

func NewResourcePermissions_Override(r ResourcePermissions, instance Resource)

func NewResource_Override ΒΆ

func NewResource_Override(r Resource, scope constructs.Construct, id *string)

func NewRoleBinding_Override ΒΆ

func NewRoleBinding_Override(r RoleBinding, scope constructs.Construct, id *string, props *RoleBindingProps)

func NewRole_Override ΒΆ

func NewRole_Override(r Role, scope constructs.Construct, id *string, props *RoleProps)

func NewSecret_Override ΒΆ

func NewSecret_Override(s Secret, scope constructs.Construct, id *string, props *SecretProps)

func NewServiceAccountTokenSecret_Override ΒΆ

func NewServiceAccountTokenSecret_Override(s ServiceAccountTokenSecret, scope constructs.Construct, id *string, props *ServiceAccountTokenSecretProps)

func NewServiceAccount_Override ΒΆ

func NewServiceAccount_Override(s ServiceAccount, scope constructs.Construct, id *string, props *ServiceAccountProps)

func NewService_Override ΒΆ

func NewService_Override(s Service, scope constructs.Construct, id *string, props *ServiceProps)

func NewSshAuthSecret_Override ΒΆ

func NewSshAuthSecret_Override(s SshAuthSecret, scope constructs.Construct, id *string, props *SshAuthSecretProps)

func NewStatefulSet_Override ΒΆ

func NewStatefulSet_Override(s StatefulSet, scope constructs.Construct, id *string, props *StatefulSetProps)

func NewTaintedNode_Override ΒΆ

func NewTaintedNode_Override(t TaintedNode, taintSelector *[]NodeTaintQuery)

func NewTlsSecret_Override ΒΆ

func NewTlsSecret_Override(t TlsSecret, scope constructs.Construct, id *string, props *TlsSecretProps)

func NewWorkloadScheduling_Override ΒΆ

func NewWorkloadScheduling_Override(w WorkloadScheduling, instance AbstractPod)

func NewWorkload_Override ΒΆ

func NewWorkload_Override(w Workload, scope constructs.Construct, id *string, props *WorkloadProps)

func PersistentVolumeClaim_IsConstruct ΒΆ

func PersistentVolumeClaim_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func PersistentVolume_IsConstruct ΒΆ

func PersistentVolume_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Pod_ADDRESS_LABEL ΒΆ

func Pod_ADDRESS_LABEL() *string

func Pod_IsConstruct ΒΆ

func Pod_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Pods_IsConstruct ΒΆ

func Pods_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Resource_IsConstruct ΒΆ

func Resource_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func RoleBinding_IsConstruct ΒΆ

func RoleBinding_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Role_IsConstruct ΒΆ

func Role_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Secret_IsConstruct ΒΆ

func Secret_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func ServiceAccountTokenSecret_IsConstruct ΒΆ

func ServiceAccountTokenSecret_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func ServiceAccount_IsConstruct ΒΆ

func ServiceAccount_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Service_IsConstruct ΒΆ

func Service_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func SshAuthSecret_IsConstruct ΒΆ

func SshAuthSecret_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func StatefulSet_IsConstruct ΒΆ

func StatefulSet_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func TlsSecret_IsConstruct ΒΆ

func TlsSecret_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func User_IsConstruct ΒΆ

func User_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Volume_IsConstruct ΒΆ

func Volume_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

func Workload_IsConstruct ΒΆ

func Workload_IsConstruct(x interface{}) *bool

Checks if `x` is a construct.

Use this method instead of `instanceof` to properly detect `Construct` instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the `constructs` library on disk are seen as independent, completely different libraries. As a consequence, the class `Construct` in each copy of the `constructs` library is seen as a different class, and an instance of one class will not test as `instanceof` the other class. `npm install` will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the `constructs` library can be accidentally installed, and `instanceof` will behave unpredictably. It is safest to avoid using `instanceof`, and using this type-testing method instead.

Returns: true if `x` is an object created from a class which extends `Construct`.

Types ΒΆ

type AbstractPod ΒΆ

type AbstractPod interface {
	Resource
	INetworkPolicyPeer
	IPodSelector
	ISubject
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

type AbstractPodProps ΒΆ

type AbstractPodProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
}

Properties for `AbstractPod`.

type AddDeploymentOptions ΒΆ

type AddDeploymentOptions struct {
	// The name of this port within the service.
	//
	// This must be a DNS_LABEL. All
	// ports within a ServiceSpec must have unique names. This maps to the 'Name'
	// field in EndpointPort objects. Optional if only one ServicePort is defined
	// on this service.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The port on each node on which this service is exposed when type=NodePort or LoadBalancer.
	//
	// Usually assigned by the system. If specified, it will be
	// allocated to the service if unused or else creation of the service will
	// fail. Default is to auto-allocate a port if the ServiceType of this Service
	// requires one.
	// See: https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
	//
	NodePort *float64 `field:"optional" json:"nodePort" yaml:"nodePort"`
	// The IP protocol for this port.
	//
	// Supports "TCP", "UDP", and "SCTP". Default is TCP.
	Protocol Protocol `field:"optional" json:"protocol" yaml:"protocol"`
	// The port number the service will redirect to.
	TargetPort *float64 `field:"optional" json:"targetPort" yaml:"targetPort"`
	// The port number the service will bind to.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
}

Options to add a deployment to a service.

type AddDirectoryOptions ΒΆ

type AddDirectoryOptions struct {
	// Glob patterns to exclude when adding files.
	Exclude *[]*string `field:"optional" json:"exclude" yaml:"exclude"`
	// A prefix to add to all keys in the config map.
	KeyPrefix *string `field:"optional" json:"keyPrefix" yaml:"keyPrefix"`
}

Options for `configmap.addDirectory()`.

type ApiResource ΒΆ

type ApiResource interface {
	IApiEndpoint
	IApiResource
	// The group portion of the API version (e.g. `authorization.k8s.io`).
	ApiGroup() *string
	// The name of the resource type as it appears in the relevant API endpoint.
	//
	// Example:
	//   - "pods" or "pods/log"
	//
	// See: https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-resources
	//
	ResourceType() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
}

Represents information about an API resource type.

func ApiResource_API_SERVICES ΒΆ

func ApiResource_API_SERVICES() ApiResource

func ApiResource_BINDINGS ΒΆ

func ApiResource_BINDINGS() ApiResource

func ApiResource_CERTIFICATE_SIGNING_REQUESTS ΒΆ

func ApiResource_CERTIFICATE_SIGNING_REQUESTS() ApiResource

func ApiResource_CLUSTER_ROLES ΒΆ

func ApiResource_CLUSTER_ROLES() ApiResource

func ApiResource_CLUSTER_ROLE_BINDINGS ΒΆ

func ApiResource_CLUSTER_ROLE_BINDINGS() ApiResource

func ApiResource_COMPONENT_STATUSES ΒΆ

func ApiResource_COMPONENT_STATUSES() ApiResource

func ApiResource_CONFIG_MAPS ΒΆ

func ApiResource_CONFIG_MAPS() ApiResource

func ApiResource_CONTROLLER_REVISIONS ΒΆ

func ApiResource_CONTROLLER_REVISIONS() ApiResource

func ApiResource_CRON_JOBS ΒΆ

func ApiResource_CRON_JOBS() ApiResource

func ApiResource_CSI_DRIVERS ΒΆ

func ApiResource_CSI_DRIVERS() ApiResource

func ApiResource_CSI_NODES ΒΆ

func ApiResource_CSI_NODES() ApiResource

func ApiResource_CSI_STORAGE_CAPACITIES ΒΆ

func ApiResource_CSI_STORAGE_CAPACITIES() ApiResource

func ApiResource_CUSTOM_RESOURCE_DEFINITIONS ΒΆ

func ApiResource_CUSTOM_RESOURCE_DEFINITIONS() ApiResource

func ApiResource_Custom ΒΆ

func ApiResource_Custom(options *ApiResourceOptions) ApiResource

API resource information for a custom resource type.

func ApiResource_DAEMON_SETS ΒΆ

func ApiResource_DAEMON_SETS() ApiResource

func ApiResource_DEPLOYMENTS ΒΆ

func ApiResource_DEPLOYMENTS() ApiResource

func ApiResource_ENDPOINTS ΒΆ

func ApiResource_ENDPOINTS() ApiResource

func ApiResource_ENDPOINT_SLICES ΒΆ

func ApiResource_ENDPOINT_SLICES() ApiResource

func ApiResource_EVENTS ΒΆ

func ApiResource_EVENTS() ApiResource

func ApiResource_FLOW_SCHEMAS ΒΆ

func ApiResource_FLOW_SCHEMAS() ApiResource

func ApiResource_HORIZONTAL_POD_AUTOSCALERS ΒΆ

func ApiResource_HORIZONTAL_POD_AUTOSCALERS() ApiResource

func ApiResource_INGRESSES ΒΆ

func ApiResource_INGRESSES() ApiResource

func ApiResource_INGRESS_CLASSES ΒΆ

func ApiResource_INGRESS_CLASSES() ApiResource

func ApiResource_JOBS ΒΆ

func ApiResource_JOBS() ApiResource

func ApiResource_LEASES ΒΆ

func ApiResource_LEASES() ApiResource

func ApiResource_LIMIT_RANGES ΒΆ

func ApiResource_LIMIT_RANGES() ApiResource

func ApiResource_LOCAL_SUBJECT_ACCESS_REVIEWS ΒΆ

func ApiResource_LOCAL_SUBJECT_ACCESS_REVIEWS() ApiResource

func ApiResource_MUTATING_WEBHOOK_CONFIGURATIONS ΒΆ

func ApiResource_MUTATING_WEBHOOK_CONFIGURATIONS() ApiResource

func ApiResource_NAMESPACES ΒΆ

func ApiResource_NAMESPACES() ApiResource

func ApiResource_NETWORK_POLICIES ΒΆ

func ApiResource_NETWORK_POLICIES() ApiResource

func ApiResource_NODES ΒΆ

func ApiResource_NODES() ApiResource

func ApiResource_PERSISTENT_VOLUMES ΒΆ

func ApiResource_PERSISTENT_VOLUMES() ApiResource

func ApiResource_PERSISTENT_VOLUME_CLAIMS ΒΆ

func ApiResource_PERSISTENT_VOLUME_CLAIMS() ApiResource

func ApiResource_PODS ΒΆ

func ApiResource_PODS() ApiResource

func ApiResource_POD_DISRUPTION_BUDGETS ΒΆ

func ApiResource_POD_DISRUPTION_BUDGETS() ApiResource

func ApiResource_POD_SECURITY_POLICIES ΒΆ

func ApiResource_POD_SECURITY_POLICIES() ApiResource

func ApiResource_POD_TEMPLATES ΒΆ

func ApiResource_POD_TEMPLATES() ApiResource

func ApiResource_PRIORITY_CLASSES ΒΆ

func ApiResource_PRIORITY_CLASSES() ApiResource

func ApiResource_PRIORITY_LEVEL_CONFIGURATIONS ΒΆ

func ApiResource_PRIORITY_LEVEL_CONFIGURATIONS() ApiResource

func ApiResource_REPLICATION_CONTROLLERS ΒΆ

func ApiResource_REPLICATION_CONTROLLERS() ApiResource

func ApiResource_REPLICA_SETS ΒΆ

func ApiResource_REPLICA_SETS() ApiResource

func ApiResource_RESOURCE_QUOTAS ΒΆ

func ApiResource_RESOURCE_QUOTAS() ApiResource

func ApiResource_ROLES ΒΆ

func ApiResource_ROLES() ApiResource

func ApiResource_ROLE_BINDINGS ΒΆ

func ApiResource_ROLE_BINDINGS() ApiResource

func ApiResource_RUNTIME_CLASSES ΒΆ

func ApiResource_RUNTIME_CLASSES() ApiResource

func ApiResource_SECRETS ΒΆ

func ApiResource_SECRETS() ApiResource

func ApiResource_SELF_SUBJECT_ACCESS_REVIEWS ΒΆ

func ApiResource_SELF_SUBJECT_ACCESS_REVIEWS() ApiResource

func ApiResource_SELF_SUBJECT_RULES_REVIEWS ΒΆ

func ApiResource_SELF_SUBJECT_RULES_REVIEWS() ApiResource

func ApiResource_SERVICES ΒΆ

func ApiResource_SERVICES() ApiResource

func ApiResource_SERVICE_ACCOUNTS ΒΆ

func ApiResource_SERVICE_ACCOUNTS() ApiResource

func ApiResource_STATEFUL_SETS ΒΆ

func ApiResource_STATEFUL_SETS() ApiResource

func ApiResource_STORAGE_CLASSES ΒΆ

func ApiResource_STORAGE_CLASSES() ApiResource

func ApiResource_SUBJECT_ACCESS_REVIEWS ΒΆ

func ApiResource_SUBJECT_ACCESS_REVIEWS() ApiResource

func ApiResource_TOKEN_REVIEWS ΒΆ

func ApiResource_TOKEN_REVIEWS() ApiResource

func ApiResource_VALIDATING_WEBHOOK_CONFIGURATIONS ΒΆ

func ApiResource_VALIDATING_WEBHOOK_CONFIGURATIONS() ApiResource

func ApiResource_VOLUME_ATTACHMENTS ΒΆ

func ApiResource_VOLUME_ATTACHMENTS() ApiResource

type ApiResourceOptions ΒΆ

type ApiResourceOptions struct {
	// The group portion of the API version (e.g. `authorization.k8s.io`).
	ApiGroup *string `field:"required" json:"apiGroup" yaml:"apiGroup"`
	// The name of the resource type as it appears in the relevant API endpoint.
	//
	// Example:
	//   - "pods" or "pods/log"
	//
	// See: https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-resources
	//
	ResourceType *string `field:"required" json:"resourceType" yaml:"resourceType"`
}

Options for `ApiResource`.

type AwsElasticBlockStorePersistentVolume ΒΆ

type AwsElasticBlockStorePersistentVolume interface {
	PersistentVolume
	// Access modes requirement of this claim.
	AccessModes() *[]PersistentVolumeAccessMode
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// PVC this volume is bound to.
	//
	// Undefined means this volume is not yet
	// claimed by any PVC.
	Claim() IPersistentVolumeClaim
	// File system type of this volume.
	FsType() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// Volume mode of this volume.
	Mode() PersistentVolumeMode
	// Mount options of this volume.
	MountOptions() *[]*string
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	// Partition of this volume.
	Partition() *float64
	Permissions() ResourcePermissions
	// Whether or not it is mounted as a read-only volume.
	ReadOnly() *bool
	// Reclaim policy of this volume.
	ReclaimPolicy() PersistentVolumeReclaimPolicy
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Storage size of this volume.
	Storage() cdk8s.Size
	// Storage class this volume belongs to.
	StorageClassName() *string
	// Volume id of this volume.
	VolumeId() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Convert the piece of storage into a concrete volume.
	AsVolume() Volume
	// Bind a volume to a specific claim.
	//
	// Note that you must also bind the claim to the volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#binding
	//
	Bind(claim IPersistentVolumeClaim)
	// Reserve a `PersistentVolume` by creating a `PersistentVolumeClaim` that is wired to claim this volume.
	//
	// Note that this method will throw in case the volume is already claimed.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reserving-a-persistentvolume
	//
	Reserve() PersistentVolumeClaim
	// Returns a string representation of this construct.
	ToString() *string
}

Represents an AWS Disk resource that is attached to a kubelet's host machine and then exposed to the pod. See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore

func NewAwsElasticBlockStorePersistentVolume ΒΆ

func NewAwsElasticBlockStorePersistentVolume(scope constructs.Construct, id *string, props *AwsElasticBlockStorePersistentVolumeProps) AwsElasticBlockStorePersistentVolume

type AwsElasticBlockStorePersistentVolumeProps ΒΆ

type AwsElasticBlockStorePersistentVolumeProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Contains all ways the volume can be mounted.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes
	//
	AccessModes *[]PersistentVolumeAccessMode `field:"optional" json:"accessModes" yaml:"accessModes"`
	// Part of a bi-directional binding between PersistentVolume and PersistentVolumeClaim.
	//
	// Expected to be non-nil when bound.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#binding
	//
	Claim IPersistentVolumeClaim `field:"optional" json:"claim" yaml:"claim"`
	// A list of mount options, e.g. ["ro", "soft"]. Not validated - mount will simply fail if one is invalid.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options
	//
	MountOptions *[]*string `field:"optional" json:"mountOptions" yaml:"mountOptions"`
	// When a user is done with their volume, they can delete the PVC objects from the API that allows reclamation of the resource.
	//
	// The reclaim policy tells the cluster what to do with
	// the volume after it has been released of its claim.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#reclaiming
	//
	ReclaimPolicy PersistentVolumeReclaimPolicy `field:"optional" json:"reclaimPolicy" yaml:"reclaimPolicy"`
	// What is the storage capacity of this volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
	//
	Storage cdk8s.Size `field:"optional" json:"storage" yaml:"storage"`
	// Name of StorageClass to which this persistent volume belongs.
	StorageClassName *string `field:"optional" json:"storageClassName" yaml:"storageClassName"`
	// Defines what type of volume is required by the claim.
	VolumeMode PersistentVolumeMode `field:"optional" json:"volumeMode" yaml:"volumeMode"`
	// Unique ID of the persistent disk resource in AWS (Amazon EBS volume).
	//
	// More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	VolumeId *string `field:"required" json:"volumeId" yaml:"volumeId"`
	// Filesystem type of the volume that you want to mount.
	//
	// Tip: Ensure that the filesystem type is supported by the host operating system.
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	FsType *string `field:"optional" json:"fsType" yaml:"fsType"`
	// The partition in the volume that you want to mount.
	//
	// If omitted, the default is to mount by volume name.
	// Examples: For volume /dev/sda1, you specify the partition as "1".
	// Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
	Partition *float64 `field:"optional" json:"partition" yaml:"partition"`
	// Specify "true" to force and set the ReadOnly property in VolumeMounts to "true".
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Properties for `AwsElasticBlockStorePersistentVolume`.

type AwsElasticBlockStoreVolumeOptions ΒΆ

type AwsElasticBlockStoreVolumeOptions struct {
	// Filesystem type of the volume that you want to mount.
	//
	// Tip: Ensure that the filesystem type is supported by the host operating system.
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	FsType *string `field:"optional" json:"fsType" yaml:"fsType"`
	// The volume name.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The partition in the volume that you want to mount.
	//
	// If omitted, the default is to mount by volume name.
	// Examples: For volume /dev/sda1, you specify the partition as "1".
	// Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
	Partition *float64 `field:"optional" json:"partition" yaml:"partition"`
	// Specify "true" to force and set the ReadOnly property in VolumeMounts to "true".
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Options of `Volume.fromAwsElasticBlockStore`.

type AzureDiskPersistentVolume ΒΆ

type AzureDiskPersistentVolume interface {
	PersistentVolume
	// Access modes requirement of this claim.
	AccessModes() *[]PersistentVolumeAccessMode
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Azure kind of this volume.
	AzureKind() AzureDiskPersistentVolumeKind
	// Caching mode of this volume.
	CachingMode() AzureDiskPersistentVolumeCachingMode
	// PVC this volume is bound to.
	//
	// Undefined means this volume is not yet
	// claimed by any PVC.
	Claim() IPersistentVolumeClaim
	// Disk name of this volume.
	DiskName() *string
	// Disk URI of this volume.
	DiskUri() *string
	// File system type of this volume.
	FsType() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// Volume mode of this volume.
	Mode() PersistentVolumeMode
	// Mount options of this volume.
	MountOptions() *[]*string
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// Whether or not it is mounted as a read-only volume.
	ReadOnly() *bool
	// Reclaim policy of this volume.
	ReclaimPolicy() PersistentVolumeReclaimPolicy
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Storage size of this volume.
	Storage() cdk8s.Size
	// Storage class this volume belongs to.
	StorageClassName() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Convert the piece of storage into a concrete volume.
	AsVolume() Volume
	// Bind a volume to a specific claim.
	//
	// Note that you must also bind the claim to the volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#binding
	//
	Bind(claim IPersistentVolumeClaim)
	// Reserve a `PersistentVolume` by creating a `PersistentVolumeClaim` that is wired to claim this volume.
	//
	// Note that this method will throw in case the volume is already claimed.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reserving-a-persistentvolume
	//
	Reserve() PersistentVolumeClaim
	// Returns a string representation of this construct.
	ToString() *string
}

AzureDisk represents an Azure Data Disk mount on the host and bind mount to the pod.

func NewAzureDiskPersistentVolume ΒΆ

func NewAzureDiskPersistentVolume(scope constructs.Construct, id *string, props *AzureDiskPersistentVolumeProps) AzureDiskPersistentVolume

type AzureDiskPersistentVolumeCachingMode ΒΆ

type AzureDiskPersistentVolumeCachingMode string

Azure disk caching modes.

const (
	// None.
	AzureDiskPersistentVolumeCachingMode_NONE AzureDiskPersistentVolumeCachingMode = "NONE"
	// ReadOnly.
	AzureDiskPersistentVolumeCachingMode_READ_ONLY AzureDiskPersistentVolumeCachingMode = "READ_ONLY"
	// ReadWrite.
	AzureDiskPersistentVolumeCachingMode_READ_WRITE AzureDiskPersistentVolumeCachingMode = "READ_WRITE"
)

type AzureDiskPersistentVolumeKind ΒΆ

type AzureDiskPersistentVolumeKind string

Azure Disk kinds.

const (
	// Multiple blob disks per storage account.
	AzureDiskPersistentVolumeKind_SHARED AzureDiskPersistentVolumeKind = "SHARED"
	// Single blob disk per storage account.
	AzureDiskPersistentVolumeKind_DEDICATED AzureDiskPersistentVolumeKind = "DEDICATED"
	// Azure managed data disk.
	AzureDiskPersistentVolumeKind_MANAGED AzureDiskPersistentVolumeKind = "MANAGED"
)

type AzureDiskPersistentVolumeProps ΒΆ

type AzureDiskPersistentVolumeProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Contains all ways the volume can be mounted.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes
	//
	AccessModes *[]PersistentVolumeAccessMode `field:"optional" json:"accessModes" yaml:"accessModes"`
	// Part of a bi-directional binding between PersistentVolume and PersistentVolumeClaim.
	//
	// Expected to be non-nil when bound.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#binding
	//
	Claim IPersistentVolumeClaim `field:"optional" json:"claim" yaml:"claim"`
	// A list of mount options, e.g. ["ro", "soft"]. Not validated - mount will simply fail if one is invalid.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options
	//
	MountOptions *[]*string `field:"optional" json:"mountOptions" yaml:"mountOptions"`
	// When a user is done with their volume, they can delete the PVC objects from the API that allows reclamation of the resource.
	//
	// The reclaim policy tells the cluster what to do with
	// the volume after it has been released of its claim.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#reclaiming
	//
	ReclaimPolicy PersistentVolumeReclaimPolicy `field:"optional" json:"reclaimPolicy" yaml:"reclaimPolicy"`
	// What is the storage capacity of this volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
	//
	Storage cdk8s.Size `field:"optional" json:"storage" yaml:"storage"`
	// Name of StorageClass to which this persistent volume belongs.
	StorageClassName *string `field:"optional" json:"storageClassName" yaml:"storageClassName"`
	// Defines what type of volume is required by the claim.
	VolumeMode PersistentVolumeMode `field:"optional" json:"volumeMode" yaml:"volumeMode"`
	// The Name of the data disk in the blob storage.
	DiskName *string `field:"required" json:"diskName" yaml:"diskName"`
	// The URI the data disk in the blob storage.
	DiskUri *string `field:"required" json:"diskUri" yaml:"diskUri"`
	// Host Caching mode.
	CachingMode AzureDiskPersistentVolumeCachingMode `field:"optional" json:"cachingMode" yaml:"cachingMode"`
	// Filesystem type to mount.
	//
	// Must be a filesystem type supported by the host operating system.
	FsType *string `field:"optional" json:"fsType" yaml:"fsType"`
	// Kind of disk.
	Kind AzureDiskPersistentVolumeKind `field:"optional" json:"kind" yaml:"kind"`
	// Force the ReadOnly setting in VolumeMounts.
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Properties for `AzureDiskPersistentVolume`.

type AzureDiskVolumeOptions ΒΆ

type AzureDiskVolumeOptions struct {
	// Host Caching mode.
	CachingMode AzureDiskPersistentVolumeCachingMode `field:"optional" json:"cachingMode" yaml:"cachingMode"`
	// Filesystem type to mount.
	//
	// Must be a filesystem type supported by the host operating system.
	FsType *string `field:"optional" json:"fsType" yaml:"fsType"`
	// Kind of disk.
	Kind AzureDiskPersistentVolumeKind `field:"optional" json:"kind" yaml:"kind"`
	// The volume name.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// Force the ReadOnly setting in VolumeMounts.
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Options of `Volume.fromAzureDisk`.

type BasicAuthSecret ΒΆ

type BasicAuthSecret interface {
	Secret
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Whether or not the secret is immutable.
	Immutable() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Adds a string data field to the secert.
	AddStringData(key *string, value *string)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Gets a string data by key or undefined.
	GetStringData(key *string) *string
	// Returns a string representation of this construct.
	ToString() *string
}

Create a secret for basic authentication. See: https://kubernetes.io/docs/concepts/configuration/secret/#basic-authentication-secret

func NewBasicAuthSecret ΒΆ

func NewBasicAuthSecret(scope constructs.Construct, id *string, props *BasicAuthSecretProps) BasicAuthSecret

type BasicAuthSecretProps ΒΆ

type BasicAuthSecretProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// If set to true, ensures that data stored in the Secret cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
	// The password or token for authentication.
	Password *string `field:"required" json:"password" yaml:"password"`
	// The user name for authentication.
	Username *string `field:"required" json:"username" yaml:"username"`
}

Options for `BasicAuthSecret`.

type ClusterRole ΒΆ

type ClusterRole interface {
	Resource
	IClusterRole
	IRole
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Rules associaated with this Role.
	//
	// Returns a copy, use `allow` to add rules.
	Rules() *[]*ClusterRolePolicyRule
	// Aggregate rules from roles matching this label selector.
	Aggregate(key *string, value *string)
	// Add permission to perform a list of HTTP verbs on a collection of resources.
	// See: https://kubernetes.io/docs/reference/access-authn-authz/authorization/#determine-the-request-verb
	//
	Allow(verbs *[]*string, endpoints ...IApiEndpoint)
	// Add "create" permission for the resources.
	AllowCreate(endpoints ...IApiEndpoint)
	// Add "delete" permission for the resources.
	AllowDelete(endpoints ...IApiEndpoint)
	// Add "deletecollection" permission for the resources.
	AllowDeleteCollection(endpoints ...IApiEndpoint)
	// Add "get" permission for the resources.
	AllowGet(endpoints ...IApiEndpoint)
	// Add "list" permission for the resources.
	AllowList(endpoints ...IApiEndpoint)
	// Add "patch" permission for the resources.
	AllowPatch(endpoints ...IApiEndpoint)
	// Add "get", "list", and "watch" permissions for the resources.
	AllowRead(endpoints ...IApiEndpoint)
	// Add "get", "list", "watch", "create", "update", "patch", "delete", and "deletecollection" permissions for the resources.
	AllowReadWrite(endpoints ...IApiEndpoint)
	// Add "update" permission for the resources.
	AllowUpdate(endpoints ...IApiEndpoint)
	// Add "watch" permission for the resources.
	AllowWatch(endpoints ...IApiEndpoint)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Create a ClusterRoleBinding that binds the permissions in this ClusterRole to a list of subjects, without namespace restrictions.
	Bind(subjects ...ISubject) ClusterRoleBinding
	// Create a RoleBinding that binds the permissions in this ClusterRole to a list of subjects, that will only apply to the given namespace.
	BindInNamespace(namespace *string, subjects ...ISubject) RoleBinding
	// Combines the rules of the argument ClusterRole into this ClusterRole using aggregation labels.
	Combine(rol ClusterRole)
	// Returns a string representation of this construct.
	ToString() *string
}

ClusterRole is a cluster level, logical grouping of PolicyRules that can be referenced as a unit by a RoleBinding or ClusterRoleBinding.

func NewClusterRole ΒΆ

func NewClusterRole(scope constructs.Construct, id *string, props *ClusterRoleProps) ClusterRole

type ClusterRoleBinding ΒΆ

type ClusterRoleBinding interface {
	Resource
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	Role() IClusterRole
	Subjects() *[]ISubject
	// Adds a subject to the role.
	AddSubjects(subjects ...ISubject)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
}

A ClusterRoleBinding grants permissions cluster-wide to a user or set of users.

func NewClusterRoleBinding ΒΆ

func NewClusterRoleBinding(scope constructs.Construct, id *string, props *ClusterRoleBindingProps) ClusterRoleBinding

type ClusterRoleBindingProps ΒΆ

type ClusterRoleBindingProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// The role to bind to.
	Role IClusterRole `field:"required" json:"role" yaml:"role"`
}

Properties for `ClusterRoleBinding`.

type ClusterRolePolicyRule ΒΆ

type ClusterRolePolicyRule struct {
	// Endpoints this rule applies to.
	//
	// Can be either api resources
	// or non api resources.
	Endpoints *[]IApiEndpoint `field:"required" json:"endpoints" yaml:"endpoints"`
	// Verbs to allow.
	//
	// (e.g ['get', 'watch'])
	Verbs *[]*string `field:"required" json:"verbs" yaml:"verbs"`
}

Policy rule of a `ClusterRole.

type ClusterRoleProps ΒΆ

type ClusterRoleProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Specify labels that should be used to locate ClusterRoles, whose rules will be automatically filled into this ClusterRole's rules.
	AggregationLabels *map[string]*string `field:"optional" json:"aggregationLabels" yaml:"aggregationLabels"`
	// A list of rules the role should allow.
	Rules *[]*ClusterRolePolicyRule `field:"optional" json:"rules" yaml:"rules"`
}

Properties for `ClusterRole`.

type CommandProbeOptions ΒΆ

type CommandProbeOptions struct {
	// Minimum consecutive failures for the probe to be considered failed after having succeeded.
	//
	// Defaults to 3. Minimum value is 1.
	FailureThreshold *float64 `field:"optional" json:"failureThreshold" yaml:"failureThreshold"`
	// Number of seconds after the container has started before liveness probes are initiated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
	//
	InitialDelaySeconds cdk8s.Duration `field:"optional" json:"initialDelaySeconds" yaml:"initialDelaySeconds"`
	// How often (in seconds) to perform the probe.
	//
	// Default to 10 seconds. Minimum value is 1.
	PeriodSeconds cdk8s.Duration `field:"optional" json:"periodSeconds" yaml:"periodSeconds"`
	// Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1.
	//
	// Must be 1 for liveness and startup. Minimum value is 1.
	SuccessThreshold *float64 `field:"optional" json:"successThreshold" yaml:"successThreshold"`
	// Number of seconds after which the probe times out.
	//
	// Defaults to 1 second. Minimum value is 1.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
	//
	TimeoutSeconds cdk8s.Duration `field:"optional" json:"timeoutSeconds" yaml:"timeoutSeconds"`
}

Options for `Probe.fromCommand()`.

type CommonSecretProps ΒΆ

type CommonSecretProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// If set to true, ensures that data stored in the Secret cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
}

Common properties for `Secret`.

type ConcurrencyPolicy ΒΆ

type ConcurrencyPolicy string

Concurrency policy for CronJobs.

const (
	// This policy allows to run job concurrently.
	ConcurrencyPolicy_ALLOW ConcurrencyPolicy = "ALLOW"
	// This policy does not allow to run job concurrently.
	//
	// It does not let a new job to be scheduled if the previous one is not finished yet.
	ConcurrencyPolicy_FORBID ConcurrencyPolicy = "FORBID"
	// This policy replaces the currently running job if a new job is being scheduled.
	ConcurrencyPolicy_REPLACE ConcurrencyPolicy = "REPLACE"
)

type ConfigMap ΒΆ

type ConfigMap interface {
	Resource
	IConfigMap
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The binary data associated with this config map.
	//
	// Returns a copy. To add data records, use `addBinaryData()` or `addData()`.
	BinaryData() *map[string]*string
	// The data associated with this config map.
	//
	// Returns an copy. To add data records, use `addData()` or `addBinaryData()`.
	Data() *map[string]*string
	// Whether or not this config map is immutable.
	Immutable() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Adds a binary data entry to the config map.
	//
	// BinaryData can contain byte
	// sequences that are not in the UTF-8 range.
	AddBinaryData(key *string, value *string)
	// Adds a data entry to the config map.
	AddData(key *string, value *string)
	// Adds a directory to the ConfigMap.
	AddDirectory(localDir *string, options *AddDirectoryOptions)
	// Adds a file to the ConfigMap.
	AddFile(localFile *string, key *string)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
}

ConfigMap holds configuration data for pods to consume.

func NewConfigMap ΒΆ

func NewConfigMap(scope constructs.Construct, id *string, props *ConfigMapProps) ConfigMap

type ConfigMapProps ΒΆ

type ConfigMapProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// BinaryData contains the binary data.
	//
	// Each key must consist of alphanumeric characters, '-', '_' or '.'.
	// BinaryData can contain byte sequences that are not in the UTF-8 range. The
	// keys stored in BinaryData must not overlap with the ones in the Data field,
	// this is enforced during validation process.
	//
	// You can also add binary data using `configMap.addBinaryData()`.
	BinaryData *map[string]*string `field:"optional" json:"binaryData" yaml:"binaryData"`
	// Data contains the configuration data.
	//
	// Each key must consist of alphanumeric characters, '-', '_' or '.'. Values
	// with non-UTF-8 byte sequences must use the BinaryData field. The keys
	// stored in Data must not overlap with the keys in the BinaryData field, this
	// is enforced during validation process.
	//
	// You can also add data using `configMap.addData()`.
	Data *map[string]*string `field:"optional" json:"data" yaml:"data"`
	// If set to true, ensures that data stored in the ConfigMap cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
}

Properties for initialization of `ConfigMap`.

type ConfigMapVolumeOptions ΒΆ

type ConfigMapVolumeOptions struct {
	// Mode bits to use on created files by default.
	//
	// Must be a value between 0 and
	// 0777. Defaults to 0644. Directories within the path are not affected by
	// this setting. This might be in conflict with other options that affect the
	// file mode, like fsGroup, and the result can be other mode bits set.
	DefaultMode *float64 `field:"optional" json:"defaultMode" yaml:"defaultMode"`
	// If unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value.
	//
	// If specified, the listed keys will be projected
	// into the specified paths, and unlisted keys will not be present. If a key
	// is specified which is not present in the ConfigMap, the volume setup will
	// error unless it is marked optional. Paths must be relative and may not
	// contain the '..' path or start with '..'.
	Items *map[string]*PathMapping `field:"optional" json:"items" yaml:"items"`
	// The volume name.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// Specify whether the ConfigMap or its keys must be defined.
	Optional *bool `field:"optional" json:"optional" yaml:"optional"`
}

Options for the ConfigMap-based volume.

type ConnectionScheme ΒΆ

type ConnectionScheme string
const (
	// Use HTTP request for connecting to host.
	ConnectionScheme_HTTP ConnectionScheme = "HTTP"
	// Use HTTPS request for connecting to host.
	ConnectionScheme_HTTPS ConnectionScheme = "HTTPS"
)

type Container ΒΆ

type Container interface {
	// Arguments to the entrypoint.
	//
	// Returns: a copy of the arguments array, cannot be modified.
	Args() *[]*string
	// Entrypoint array (the command to execute when the container starts).
	//
	// Returns: a copy of the entrypoint array, cannot be modified.
	Command() *[]*string
	// The environment of the container.
	Env() Env
	// The container image.
	Image() *string
	// Image pull policy for this container.
	ImagePullPolicy() ImagePullPolicy
	// Volume mounts configured for this container.
	Mounts() *[]*VolumeMount
	// The name of the container.
	Name() *string
	// Deprecated: - use `portNumber`.
	Port() *float64
	// The port number that was configured for this container.
	//
	// If undefined, either the container doesn't expose a port, or its
	// port configuration is stored in the `ports` field.
	PortNumber() *float64
	// Ports exposed by this containers.
	//
	// Returns a copy, use `addPort` to modify.
	Ports() *[]*ContainerPort
	// Compute resources (CPU and memory requests and limits) required by the container.
	// See: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
	//
	Resources() *ContainerResources
	// The security context of the container.
	SecurityContext() ContainerSecurityContext
	// The working directory inside the container.
	WorkingDir() *string
	// Add a port to expose from this container.
	AddPort(port *ContainerPort)
	// Mount a volume to a specific path so that it is accessible by the container.
	//
	// Every pod that is configured to use this container will autmoatically have access to the volume.
	Mount(path *string, storage IStorage, options *MountOptions)
}

A single application container that you want to run within a pod.

func NewContainer ΒΆ

func NewContainer(props *ContainerProps) Container

type ContainerLifecycle ΒΆ

type ContainerLifecycle struct {
	// This hook is executed immediately after a container is created.
	//
	// However,
	// there is no guarantee that the hook will execute before the container ENTRYPOINT.
	PostStart Handler `field:"optional" json:"postStart" yaml:"postStart"`
	// This hook is called immediately before a container is terminated due to an API request or management event such as a liveness/startup probe failure, preemption, resource contention and others.
	//
	// A call to the PreStop hook fails if the container is already in a terminated or completed state
	// and the hook must complete before the TERM signal to stop the container can be sent.
	// The Pod's termination grace period countdown begins before the PreStop hook is executed,
	// so regardless of the outcome of the handler, the container will eventually terminate
	// within the Pod's termination grace period. No parameters are passed to the handler.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-termination
	//
	PreStop Handler `field:"optional" json:"preStop" yaml:"preStop"`
}

Container lifecycle properties.

type ContainerPort ΒΆ

type ContainerPort struct {
	// Number of port to expose on the pod's IP address.
	//
	// This must be a valid port number, 0 < x < 65536.
	Number *float64 `field:"required" json:"number" yaml:"number"`
	// What host IP to bind the external port to.
	HostIp *string `field:"optional" json:"hostIp" yaml:"hostIp"`
	// Number of port to expose on the host.
	//
	// If specified, this must be a valid port number, 0 < x < 65536.
	// Most containers do not need this.
	HostPort *float64 `field:"optional" json:"hostPort" yaml:"hostPort"`
	// If specified, this must be an IANA_SVC_NAME and unique within the pod.
	//
	// Each named port in a pod must have a unique name.
	// Name for the port that can be referred to by services.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// Protocol for port.
	//
	// Must be UDP, TCP, or SCTP. Defaults to "TCP".
	Protocol Protocol `field:"optional" json:"protocol" yaml:"protocol"`
}

Represents a network port in a single container.

type ContainerProps ΒΆ

type ContainerProps struct {
	// Docker image name.
	Image *string `field:"required" json:"image" yaml:"image"`
	// Arguments to the entrypoint. The docker image's CMD is used if `command` is not provided.
	//
	// Variable references $(VAR_NAME) are expanded using the container's
	// environment. If a variable cannot be resolved, the reference in the input
	// string will be unchanged. The $(VAR_NAME) syntax can be escaped with a
	// double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
	// regardless of whether the variable exists or not.
	//
	// Cannot be updated.
	// See: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
	//
	Args *[]*string `field:"optional" json:"args" yaml:"args"`
	// Entrypoint array.
	//
	// Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment.
	// If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME).
	// Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated.
	// More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
	Command *[]*string `field:"optional" json:"command" yaml:"command"`
	// List of sources to populate environment variables in the container.
	//
	// When a key exists in multiple sources, the value associated with
	// the last source will take precedence. Values defined by the `envVariables` property
	// with a duplicate key will take precedence.
	EnvFrom *[]EnvFrom `field:"optional" json:"envFrom" yaml:"envFrom"`
	// Environment variables to set in the container.
	EnvVariables *map[string]EnvValue `field:"optional" json:"envVariables" yaml:"envVariables"`
	// Image pull policy for this container.
	ImagePullPolicy ImagePullPolicy `field:"optional" json:"imagePullPolicy" yaml:"imagePullPolicy"`
	// Describes actions that the management system should take in response to container lifecycle events.
	Lifecycle *ContainerLifecycle `field:"optional" json:"lifecycle" yaml:"lifecycle"`
	// Periodic probe of container liveness.
	//
	// Container will be restarted if the probe fails.
	Liveness Probe `field:"optional" json:"liveness" yaml:"liveness"`
	// Name of the container specified as a DNS_LABEL.
	//
	// Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// Deprecated: - use `portNumber`.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
	// Number of port to expose on the pod's IP address.
	//
	// This must be a valid port number, 0 < x < 65536.
	//
	// This is a convinience property if all you need a single TCP numbered port.
	// In case more advanced configuartion is required, use the `ports` property.
	//
	// This port is added to the list of ports mentioned in the `ports` property.
	PortNumber *float64 `field:"optional" json:"portNumber" yaml:"portNumber"`
	// List of ports to expose from this container.
	Ports *[]*ContainerPort `field:"optional" json:"ports" yaml:"ports"`
	// Determines when the container is ready to serve traffic.
	Readiness Probe `field:"optional" json:"readiness" yaml:"readiness"`
	// Compute resources (CPU and memory requests and limits) required by the container.
	// See: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
	//
	Resources *ContainerResources `field:"optional" json:"resources" yaml:"resources"`
	// SecurityContext defines the security options the container should be run with.
	//
	// If set, the fields override equivalent fields of the pod's security context.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
	//
	SecurityContext *ContainerSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// StartupProbe indicates that the Pod has successfully initialized.
	//
	// If specified, no other probes are executed until this completes successfully.
	Startup Probe `field:"optional" json:"startup" yaml:"startup"`
	// Pod volumes to mount into the container's filesystem.
	//
	// Cannot be updated.
	VolumeMounts *[]*VolumeMount `field:"optional" json:"volumeMounts" yaml:"volumeMounts"`
	// Container's working directory.
	//
	// If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
	WorkingDir *string `field:"optional" json:"workingDir" yaml:"workingDir"`
}

Properties for creating a container.

type ContainerResources ΒΆ

type ContainerResources struct {
	Cpu              *CpuResources              `field:"optional" json:"cpu" yaml:"cpu"`
	EphemeralStorage *EphemeralStorageResources `field:"optional" json:"ephemeralStorage" yaml:"ephemeralStorage"`
	Memory           *MemoryResources           `field:"optional" json:"memory" yaml:"memory"`
}

CPU and memory compute resources.

type ContainerSecurityContext ΒΆ

type ContainerSecurityContext interface {
	AllowPrivilegeEscalation() *bool
	EnsureNonRoot() *bool
	Group() *float64
	Privileged() *bool
	ReadOnlyRootFilesystem() *bool
	User() *float64
}

Container security attributes and settings.

type ContainerSecurityContextProps ΒΆ

type ContainerSecurityContextProps struct {
	// Whether a process can gain more privileges than its parent process.
	AllowPrivilegeEscalation *bool `field:"optional" json:"allowPrivilegeEscalation" yaml:"allowPrivilegeEscalation"`
	// Indicates that the container must run as a non-root user.
	//
	// If true, the Kubelet will validate the image at runtime to ensure that it does
	// not run as UID 0 (root) and fail to start the container if it does.
	EnsureNonRoot *bool `field:"optional" json:"ensureNonRoot" yaml:"ensureNonRoot"`
	// The GID to run the entrypoint of the container process.
	Group *float64 `field:"optional" json:"group" yaml:"group"`
	// Run container in privileged mode.
	//
	// Processes in privileged containers are essentially equivalent to root on the host.
	Privileged *bool `field:"optional" json:"privileged" yaml:"privileged"`
	// Whether this container has a read-only root filesystem.
	ReadOnlyRootFilesystem *bool `field:"optional" json:"readOnlyRootFilesystem" yaml:"readOnlyRootFilesystem"`
	// The UID to run the entrypoint of the container process.
	User *float64 `field:"optional" json:"user" yaml:"user"`
}

Properties for `ContainerSecurityContext`.

type Cpu ΒΆ

type Cpu interface {
	Amount() *string
	SetAmount(val *string)
}

Represents the amount of CPU.

The amount can be passed as millis or units.

func Cpu_Millis ΒΆ

func Cpu_Millis(amount *float64) Cpu

func Cpu_Units ΒΆ

func Cpu_Units(amount *float64) Cpu

type CpuResources ΒΆ

type CpuResources struct {
	Limit   Cpu `field:"optional" json:"limit" yaml:"limit"`
	Request Cpu `field:"optional" json:"request" yaml:"request"`
}

CPU request and limit.

type CronJob ΒΆ

type CronJob interface {
	Workload
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	// The policy used by this cron job to determine the concurrency mode in which to schedule jobs.
	ConcurrencyPolicy() *string
	Connections() PodConnections
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	// The number of failed jobs retained by this cron job.
	FailedJobsRetained() *float64
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	// The expression matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add expression matchers.
	MatchExpressions() *[]*LabelSelectorRequirement
	// The label matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add label matchers.
	MatchLabels() *map[string]*string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The metadata of pods in this workload.
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// Represents the resource type.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	// The schedule this cron job is scheduled to run in.
	Schedule() cdk8s.Cron
	Scheduling() WorkloadScheduling
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	// The time by which the running cron job needs to schedule the next job execution.
	//
	// The job is considered as failed if it misses this deadline.
	StartingDeadline() cdk8s.Duration
	// The number of successful jobs retained by this cron job.
	SuccessfulJobsRetained() *float64
	// Whether or not the cron job is currently suspended or not.
	Suspend() *bool
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Configure selectors for this workload.
	Select(selectors ...LabelSelector)
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

A CronJob is responsible for creating a Job and scheduling it based on provided cron schedule.

This helps running Jobs in a recurring manner.

func NewCronJob ΒΆ

func NewCronJob(scope constructs.Construct, id *string, props *CronJobProps) CronJob

type CronJobProps ΒΆ

type CronJobProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
	// The pod metadata of this workload.
	PodMetadata *cdk8s.ApiObjectMetadata `field:"optional" json:"podMetadata" yaml:"podMetadata"`
	// Automatically allocates a pod label selector for this workload and add it to the pod metadata.
	//
	// This ensures this workload manages pods created by
	// its pod template.
	Select *bool `field:"optional" json:"select" yaml:"select"`
	// Automatically spread pods across hostname and zones.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#internal-default-constraints
	//
	Spread *bool `field:"optional" json:"spread" yaml:"spread"`
	// Specifies the duration the job may be active before the system tries to terminate it.
	ActiveDeadline cdk8s.Duration `field:"optional" json:"activeDeadline" yaml:"activeDeadline"`
	// Specifies the number of retries before marking this job failed.
	BackoffLimit *float64 `field:"optional" json:"backoffLimit" yaml:"backoffLimit"`
	// Limits the lifetime of a Job that has finished execution (either Complete or Failed).
	//
	// If this field is set, after the Job finishes, it is eligible to
	// be automatically deleted. When the Job is being deleted, its lifecycle
	// guarantees (e.g. finalizers) will be honored. If this field is set to zero,
	// the Job becomes eligible to be deleted immediately after it finishes. This
	// field is alpha-level and is only honored by servers that enable the
	// `TTLAfterFinished` feature.
	TtlAfterFinished cdk8s.Duration `field:"optional" json:"ttlAfterFinished" yaml:"ttlAfterFinished"`
	// Specifies the time in which the job would run again.
	//
	// This is defined as a cron expression in the CronJob resource.
	Schedule cdk8s.Cron `field:"required" json:"schedule" yaml:"schedule"`
	// Specifies the concurrency policy for the job.
	ConcurrencyPolicy ConcurrencyPolicy `field:"optional" json:"concurrencyPolicy" yaml:"concurrencyPolicy"`
	// Specifies the number of failed jobs history retained.
	//
	// This would retain the Job and the associated Pod resource and can be useful for debugging.
	FailedJobsRetained *float64 `field:"optional" json:"failedJobsRetained" yaml:"failedJobsRetained"`
	// Kubernetes attempts to start cron jobs at its schedule time, but this is not guaranteed.
	//
	// This deadline specifies
	// how much time can pass after a schedule point, for which kubernetes can still start the job.
	// For example, if this is set to 100 seconds, kubernetes is allowed to start the job at a maximum 100 seconds after
	// the scheduled time.
	//
	// Note that the Kubernetes CronJobController checks for things every 10 seconds, for this reason, a deadline below 10
	// seconds is not allowed, as it may cause your job to never be scheduled.
	//
	// In addition, kubernetes will stop scheduling jobs if more than 100 schedules were missed (for any reason).
	// This property also controls what time interval should kubernetes consider when counting for missed schedules.
	//
	// For example, suppose a CronJob is set to schedule a new Job every one minute beginning at 08:30:00,
	// and its `startingDeadline` field is not set. If the CronJob controller happens to be down from 08:29:00 to 10:21:00,
	// the job will not start as the number of missed jobs which missed their schedule is greater than 100.
	// However, if `startingDeadline` is set to 200 seconds, kubernetes will only count 3 missed schedules, and thus
	// start a new execution at 10:22:00.
	StartingDeadline cdk8s.Duration `field:"optional" json:"startingDeadline" yaml:"startingDeadline"`
	// Specifies the number of successful jobs history retained.
	//
	// This would retain the Job and the associated Pod resource and can be useful for debugging.
	SuccessfulJobsRetained *float64 `field:"optional" json:"successfulJobsRetained" yaml:"successfulJobsRetained"`
	// Specifies if the cron job should be suspended.
	//
	// Only applies to future executions, current ones are remained untouched.
	Suspend *bool `field:"optional" json:"suspend" yaml:"suspend"`
}

Properties for `CronJob`.

type DaemonSet ΒΆ

type DaemonSet interface {
	Workload
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	Connections() PodConnections
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	// The expression matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add expression matchers.
	MatchExpressions() *[]*LabelSelectorRequirement
	// The label matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add label matchers.
	MatchLabels() *map[string]*string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	MinReadySeconds() *float64
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The metadata of pods in this workload.
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	Scheduling() WorkloadScheduling
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Configure selectors for this workload.
	Select(selectors ...LabelSelector)
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod.

As nodes are added to the cluster, Pods are added to them. As nodes are removed from the cluster, those Pods are garbage collected. Deleting a DaemonSet will clean up the Pods it created.

Some typical uses of a DaemonSet are:

- running a cluster storage daemon on every node - running a logs collection daemon on every node - running a node monitoring daemon on every node

In a simple case, one DaemonSet, covering all nodes, would be used for each type of daemon. A more complex setup might use multiple DaemonSets for a single type of daemon, but with different flags and/or different memory and cpu requests for different hardware types.

func NewDaemonSet ΒΆ

func NewDaemonSet(scope constructs.Construct, id *string, props *DaemonSetProps) DaemonSet

type DaemonSetProps ΒΆ

type DaemonSetProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
	// The pod metadata of this workload.
	PodMetadata *cdk8s.ApiObjectMetadata `field:"optional" json:"podMetadata" yaml:"podMetadata"`
	// Automatically allocates a pod label selector for this workload and add it to the pod metadata.
	//
	// This ensures this workload manages pods created by
	// its pod template.
	Select *bool `field:"optional" json:"select" yaml:"select"`
	// Automatically spread pods across hostname and zones.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#internal-default-constraints
	//
	Spread *bool `field:"optional" json:"spread" yaml:"spread"`
	// Minimum number of seconds for which a newly created pod should be ready without any of its container crashing, for it to be considered available.
	MinReadySeconds *float64 `field:"optional" json:"minReadySeconds" yaml:"minReadySeconds"`
}

Properties for `DaemonSet`.

type Deployment ΒΆ

type Deployment interface {
	Workload
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	Connections() PodConnections
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	// The expression matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add expression matchers.
	MatchExpressions() *[]*LabelSelectorRequirement
	// The label matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add label matchers.
	MatchLabels() *map[string]*string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// Minimum duration for which a newly created pod should be ready without any of its container crashing, for it to be considered available.
	MinReady() cdk8s.Duration
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The metadata of pods in this workload.
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// The maximum duration for a deployment to make progress before it is considered to be failed.
	ProgressDeadline() cdk8s.Duration
	// Number of desired pods.
	Replicas() *float64
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	Scheduling() WorkloadScheduling
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	Strategy() DeploymentStrategy
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Expose a deployment via an ingress.
	//
	// This will first expose the deployment with a service, and then expose the service via an ingress.
	ExposeViaIngress(path *string, options *ExposeDeploymentViaIngressOptions) Ingress
	// Expose a deployment via a service.
	//
	// This is equivalent to running `kubectl expose deployment <deployment-name>`.
	ExposeViaService(options *DeploymentExposeViaServiceOptions) Service
	// Configure selectors for this workload.
	Select(selectors ...LabelSelector)
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

A Deployment provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the desired state at a controlled rate. You can define Deployments to create new ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments.

> Note: Do not manage ReplicaSets owned by a Deployment. Consider opening an issue in the main Kubernetes repository if your use case is not covered below.

Use Case ΒΆ

The following are typical use cases for Deployments:

  • Create a Deployment to rollout a ReplicaSet. The ReplicaSet creates Pods in the background. Check the status of the rollout to see if it succeeds or not.
  • Declare the new state of the Pods by updating the PodTemplateSpec of the Deployment. A new ReplicaSet is created and the Deployment manages moving the Pods from the old ReplicaSet to the new one at a controlled rate. Each new ReplicaSet updates the revision of the Deployment.
  • Rollback to an earlier Deployment revision if the current state of the Deployment is not stable. Each rollback updates the revision of the Deployment.
  • Scale up the Deployment to facilitate more load.
  • Pause the Deployment to apply multiple fixes to its PodTemplateSpec and then resume it to start a new rollout.
  • Use the status of the Deployment as an indicator that a rollout has stuck.
  • Clean up older ReplicaSets that you don't need anymore.

func NewDeployment ΒΆ

func NewDeployment(scope constructs.Construct, id *string, props *DeploymentProps) Deployment

type DeploymentExposeViaServiceOptions ΒΆ

type DeploymentExposeViaServiceOptions struct {
	// The name of the service to expose.
	//
	// If you'd like to expose the deployment multiple times,
	// you must explicitly set a name starting from the second expose call.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The ports that the service should bind to.
	Ports *[]*ServicePort `field:"optional" json:"ports" yaml:"ports"`
	// The type of the exposed service.
	ServiceType ServiceType `field:"optional" json:"serviceType" yaml:"serviceType"`
}

Options for `Deployment.exposeViaService`.

type DeploymentProps ΒΆ

type DeploymentProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
	// The pod metadata of this workload.
	PodMetadata *cdk8s.ApiObjectMetadata `field:"optional" json:"podMetadata" yaml:"podMetadata"`
	// Automatically allocates a pod label selector for this workload and add it to the pod metadata.
	//
	// This ensures this workload manages pods created by
	// its pod template.
	Select *bool `field:"optional" json:"select" yaml:"select"`
	// Automatically spread pods across hostname and zones.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#internal-default-constraints
	//
	Spread *bool `field:"optional" json:"spread" yaml:"spread"`
	// Minimum duration for which a newly created pod should be ready without any of its container crashing, for it to be considered available.
	//
	// Zero means the pod will be considered available as soon as it is ready.
	// See: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#min-ready-seconds
	//
	MinReady cdk8s.Duration `field:"optional" json:"minReady" yaml:"minReady"`
	// The maximum duration for a deployment to make progress before it is considered to be failed.
	//
	// The deployment controller will continue
	// to process failed deployments and a condition with a ProgressDeadlineExceeded
	// reason will be surfaced in the deployment status.
	//
	// Note that progress will not be estimated during the time a deployment is paused.
	// See: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#progress-deadline-seconds
	//
	ProgressDeadline cdk8s.Duration `field:"optional" json:"progressDeadline" yaml:"progressDeadline"`
	// Number of desired pods.
	Replicas *float64 `field:"optional" json:"replicas" yaml:"replicas"`
	// Specifies the strategy used to replace old Pods by new ones.
	Strategy DeploymentStrategy `field:"optional" json:"strategy" yaml:"strategy"`
}

Properties for `Deployment`.

type DeploymentStrategy ΒΆ

type DeploymentStrategy interface {
}

Deployment strategies.

func DeploymentStrategy_Recreate ΒΆ

func DeploymentStrategy_Recreate() DeploymentStrategy

All existing Pods are killed before new ones are created. See: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#recreate-deployment

type DeploymentStrategyRollingUpdateOptions ΒΆ

type DeploymentStrategyRollingUpdateOptions struct {
	// The maximum number of pods that can be scheduled above the desired number of pods.
	//
	// Value can be an absolute number (ex: 5) or a percentage of desired pods (ex: 10%).
	// Absolute number is calculated from percentage by rounding up.
	// This can not be 0 if `maxUnavailable` is 0.
	//
	// Example: when this is set to 30%, the new ReplicaSet can be scaled up immediately when the rolling update
	// starts, such that the total number of old and new pods do not exceed 130% of desired pods.
	// Once old pods have been killed, new ReplicaSet can be scaled up further, ensuring that
	// total number of pods running at any time during the update is at most 130% of desired pods.
	MaxSurge PercentOrAbsolute `field:"optional" json:"maxSurge" yaml:"maxSurge"`
	// The maximum number of pods that can be unavailable during the update.
	//
	// Value can be an absolute number (ex: 5) or a percentage of desired pods (ex: 10%).
	// Absolute number is calculated from percentage by rounding down.
	// This can not be 0 if `maxSurge` is 0.
	//
	// Example: when this is set to 30%, the old ReplicaSet can be scaled down to 70% of desired
	// pods immediately when the rolling update starts. Once new pods are ready, old ReplicaSet can
	// be scaled down further, followed by scaling up the new ReplicaSet, ensuring that the total
	// number of pods available at all times during the update is at least 70% of desired pods.
	MaxUnavailable PercentOrAbsolute `field:"optional" json:"maxUnavailable" yaml:"maxUnavailable"`
}

Options for `DeploymentStrategy.rollingUpdate`.

type DnsOption ΒΆ

type DnsOption struct {
	// Option name.
	Name *string `field:"required" json:"name" yaml:"name"`
	// Option value.
	Value *string `field:"optional" json:"value" yaml:"value"`
}

Custom DNS option.

type DnsPolicy ΒΆ

type DnsPolicy string

Pod DNS policies.

const (
	// Any DNS query that does not match the configured cluster domain suffix, such as "www.kubernetes.io", is forwarded to the upstream nameserver inherited from the node. Cluster administrators may have extra stub-domain and upstream DNS servers configured.
	DnsPolicy_CLUSTER_FIRST DnsPolicy = "CLUSTER_FIRST"
	// For Pods running with hostNetwork, you should explicitly set its DNS policy "ClusterFirstWithHostNet".
	DnsPolicy_CLUSTER_FIRST_WITH_HOST_NET DnsPolicy = "CLUSTER_FIRST_WITH_HOST_NET"
	// The Pod inherits the name resolution configuration from the node that the pods run on.
	DnsPolicy_DEFAULT DnsPolicy = "DEFAULT"
	// It allows a Pod to ignore DNS settings from the Kubernetes environment.
	//
	// All DNS settings are supposed to be provided using the dnsConfig
	// field in the Pod Spec.
	DnsPolicy_NONE DnsPolicy = "NONE"
)

type DockerConfigSecret ΒΆ

type DockerConfigSecret interface {
	Secret
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Whether or not the secret is immutable.
	Immutable() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Adds a string data field to the secert.
	AddStringData(key *string, value *string)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Gets a string data by key or undefined.
	GetStringData(key *string) *string
	// Returns a string representation of this construct.
	ToString() *string
}

Create a secret for storing credentials for accessing a container image registry. See: https://kubernetes.io/docs/concepts/configuration/secret/#docker-config-secrets

func NewDockerConfigSecret ΒΆ

func NewDockerConfigSecret(scope constructs.Construct, id *string, props *DockerConfigSecretProps) DockerConfigSecret

type DockerConfigSecretProps ΒΆ

type DockerConfigSecretProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// If set to true, ensures that data stored in the Secret cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
	// JSON content to provide for the `~/.docker/config.json` file. This will be stringified and inserted as stringData.
	// See: https://docs.docker.com/engine/reference/commandline/cli/#sample-configuration-file
	//
	Data *map[string]interface{} `field:"required" json:"data" yaml:"data"`
}

Options for `DockerConfigSecret`.

type EmptyDirMedium ΒΆ

type EmptyDirMedium string

The medium on which to store the volume.

const (
	// The default volume of the backing node.
	EmptyDirMedium_DEFAULT EmptyDirMedium = "DEFAULT"
	// Mount a tmpfs (RAM-backed filesystem) for you instead.
	//
	// While tmpfs is very
	// fast, be aware that unlike disks, tmpfs is cleared on node reboot and any
	// files you write will count against your Container's memory limit.
	EmptyDirMedium_MEMORY EmptyDirMedium = "MEMORY"
)

type EmptyDirVolumeOptions ΒΆ

type EmptyDirVolumeOptions struct {
	// By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
	//
	// However, you can set the emptyDir.medium field to
	// `EmptyDirMedium.MEMORY` to tell Kubernetes to mount a tmpfs (RAM-backed
	// filesystem) for you instead. While tmpfs is very fast, be aware that unlike
	// disks, tmpfs is cleared on node reboot and any files you write will count
	// against your Container's memory limit.
	Medium EmptyDirMedium `field:"optional" json:"medium" yaml:"medium"`
	// Total amount of local storage required for this EmptyDir volume.
	//
	// The size
	// limit is also applicable for memory medium. The maximum usage on memory
	// medium EmptyDir would be the minimum value between the SizeLimit specified
	// here and the sum of memory limits of all containers in a pod.
	SizeLimit cdk8s.Size `field:"optional" json:"sizeLimit" yaml:"sizeLimit"`
}

Options for volumes populated with an empty directory.

type Env ΒΆ

type Env interface {
	// The list of sources used to populate the container environment, in addition to the `variables`.
	//
	// Returns a copy. To add a source use `container.env.copyFrom()`.
	Sources() *[]EnvFrom
	// The environment variables for this container.
	//
	// Returns a copy. To add environment variables use `container.env.addVariable()`.
	Variables() *map[string]EnvValue
	// Add a single variable by name and value.
	//
	// The variable value can come from various dynamic sources such a secrets of config maps.
	// Use `EnvValue.fromXXX` to select sources.
	AddVariable(name *string, value EnvValue)
	// Add a collection of variables by copying from another source.
	//
	// Use `Env.fromXXX` functions to select sources.
	CopyFrom(from EnvFrom)
}

Container environment variables.

func NewEnv ΒΆ

func NewEnv(sources *[]EnvFrom, variables *map[string]EnvValue) Env

type EnvFieldPaths ΒΆ

type EnvFieldPaths string
const (
	// The name of the pod.
	EnvFieldPaths_POD_NAME EnvFieldPaths = "POD_NAME"
	// The namespace of the pod.
	EnvFieldPaths_POD_NAMESPACE EnvFieldPaths = "POD_NAMESPACE"
	// The uid of the pod.
	EnvFieldPaths_POD_UID EnvFieldPaths = "POD_UID"
	// The labels of the pod.
	EnvFieldPaths_POD_LABEL EnvFieldPaths = "POD_LABEL"
	// The annotations of the pod.
	EnvFieldPaths_POD_ANNOTATION EnvFieldPaths = "POD_ANNOTATION"
	// The ipAddress of the pod.
	EnvFieldPaths_POD_IP EnvFieldPaths = "POD_IP"
	// The service account name of the pod.
	EnvFieldPaths_SERVICE_ACCOUNT_NAME EnvFieldPaths = "SERVICE_ACCOUNT_NAME"
	// The name of the node.
	EnvFieldPaths_NODE_NAME EnvFieldPaths = "NODE_NAME"
	// The ipAddress of the node.
	EnvFieldPaths_NODE_IP EnvFieldPaths = "NODE_IP"
	// The ipAddresess of the pod.
	EnvFieldPaths_POD_IPS EnvFieldPaths = "POD_IPS"
)

type EnvFrom ΒΆ

type EnvFrom interface {
}

A collection of env variables defined in other resources.

func Env_FromConfigMap ΒΆ

func Env_FromConfigMap(configMap IConfigMap, prefix *string) EnvFrom

Selects a ConfigMap to populate the environment variables with.

The contents of the target ConfigMap's Data field will represent the key-value pairs as environment variables.

func Env_FromSecret ΒΆ

func Env_FromSecret(secr ISecret) EnvFrom

Selects a Secret to populate the environment variables with.

The contents of the target Secret's Data field will represent the key-value pairs as environment variables.

func NewEnvFrom ΒΆ

func NewEnvFrom(configMap IConfigMap, prefix *string, sec ISecret) EnvFrom

type EnvValue ΒΆ

type EnvValue interface {
	Value() interface{}
	ValueFrom() interface{}
}

Utility class for creating reading env values from various sources.

func EnvValue_FromConfigMap ΒΆ

func EnvValue_FromConfigMap(configMap IConfigMap, key *string, options *EnvValueFromConfigMapOptions) EnvValue

Create a value by reading a specific key inside a config map.

func EnvValue_FromFieldRef ΒΆ

func EnvValue_FromFieldRef(fieldPath EnvFieldPaths, options *EnvValueFromFieldRefOptions) EnvValue

Create a value from a field reference.

func EnvValue_FromProcess ΒΆ

func EnvValue_FromProcess(key *string, options *EnvValueFromProcessOptions) EnvValue

Create a value from a key in the current process environment.

func EnvValue_FromResource ΒΆ

func EnvValue_FromResource(resource ResourceFieldPaths, options *EnvValueFromResourceOptions) EnvValue

Create a value from a resource.

func EnvValue_FromSecretValue ΒΆ

func EnvValue_FromSecretValue(secretValue *SecretValue, options *EnvValueFromSecretOptions) EnvValue

Defines an environment value from a secret JSON value.

func EnvValue_FromValue ΒΆ

func EnvValue_FromValue(value *string) EnvValue

Create a value from the given argument.

type EnvValueFromConfigMapOptions ΒΆ

type EnvValueFromConfigMapOptions struct {
	// Specify whether the ConfigMap or its key must be defined.
	Optional *bool `field:"optional" json:"optional" yaml:"optional"`
}

Options to specify an envionment variable value from a ConfigMap key.

type EnvValueFromFieldRefOptions ΒΆ

type EnvValueFromFieldRefOptions struct {
	// Version of the schema the FieldPath is written in terms of.
	ApiVersion *string `field:"optional" json:"apiVersion" yaml:"apiVersion"`
	// The key to select the pod label or annotation.
	Key *string `field:"optional" json:"key" yaml:"key"`
}

Options to specify an environment variable value from a field reference.

type EnvValueFromProcessOptions ΒΆ

type EnvValueFromProcessOptions struct {
	// Specify whether the key must exist in the environment.
	//
	// If this is set to true, and the key does not exist, an error will thrown.
	Required *bool `field:"optional" json:"required" yaml:"required"`
}

Options to specify an environment variable value from the process environment.

type EnvValueFromResourceOptions ΒΆ

type EnvValueFromResourceOptions struct {
	// The container to select the value from.
	Container Container `field:"optional" json:"container" yaml:"container"`
	// The output format of the exposed resource.
	Divisor *string `field:"optional" json:"divisor" yaml:"divisor"`
}

Options to specify an environment variable value from a resource.

type EnvValueFromSecretOptions ΒΆ

type EnvValueFromSecretOptions struct {
	// Specify whether the Secret or its key must be defined.
	Optional *bool `field:"optional" json:"optional" yaml:"optional"`
}

Options to specify an environment variable value from a Secret.

type EphemeralStorageResources ΒΆ

type EphemeralStorageResources struct {
	Limit   cdk8s.Size `field:"optional" json:"limit" yaml:"limit"`
	Request cdk8s.Size `field:"optional" json:"request" yaml:"request"`
}

Emphemeral storage request and limit.

type ExposeDeploymentViaIngressOptions ΒΆ

type ExposeDeploymentViaIngressOptions struct {
	// The name of the service to expose.
	//
	// If you'd like to expose the deployment multiple times,
	// you must explicitly set a name starting from the second expose call.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The ports that the service should bind to.
	Ports *[]*ServicePort `field:"optional" json:"ports" yaml:"ports"`
	// The type of the exposed service.
	ServiceType ServiceType `field:"optional" json:"serviceType" yaml:"serviceType"`
	// The ingress to add rules to.
	Ingress Ingress `field:"optional" json:"ingress" yaml:"ingress"`
	// The type of the path.
	PathType HttpIngressPathType `field:"optional" json:"pathType" yaml:"pathType"`
}

Options for exposing a deployment via an ingress.

type ExposeServiceViaIngressOptions ΒΆ

type ExposeServiceViaIngressOptions struct {
	// The ingress to add rules to.
	Ingress Ingress `field:"optional" json:"ingress" yaml:"ingress"`
	// The type of the path.
	PathType HttpIngressPathType `field:"optional" json:"pathType" yaml:"pathType"`
}

Options for exposing a service using an ingress.

type FsGroupChangePolicy ΒΆ

type FsGroupChangePolicy string
const (
	// Only change permissions and ownership if permission and ownership of root directory does not match with expected permissions of the volume.
	//
	// This could help shorten the time it takes to change ownership and permission of a volume.
	FsGroupChangePolicy_ON_ROOT_MISMATCH FsGroupChangePolicy = "ON_ROOT_MISMATCH"
	// Always change permission and ownership of the volume when volume is mounted.
	FsGroupChangePolicy_ALWAYS FsGroupChangePolicy = "ALWAYS"
)

type GCEPersistentDiskPersistentVolume ΒΆ

type GCEPersistentDiskPersistentVolume interface {
	PersistentVolume
	// Access modes requirement of this claim.
	AccessModes() *[]PersistentVolumeAccessMode
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// PVC this volume is bound to.
	//
	// Undefined means this volume is not yet
	// claimed by any PVC.
	Claim() IPersistentVolumeClaim
	// File system type of this volume.
	FsType() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// Volume mode of this volume.
	Mode() PersistentVolumeMode
	// Mount options of this volume.
	MountOptions() *[]*string
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	// Partition of this volume.
	Partition() *float64
	// PD resource in GCE of this volume.
	PdName() *string
	Permissions() ResourcePermissions
	// Whether or not it is mounted as a read-only volume.
	ReadOnly() *bool
	// Reclaim policy of this volume.
	ReclaimPolicy() PersistentVolumeReclaimPolicy
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Storage size of this volume.
	Storage() cdk8s.Size
	// Storage class this volume belongs to.
	StorageClassName() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Convert the piece of storage into a concrete volume.
	AsVolume() Volume
	// Bind a volume to a specific claim.
	//
	// Note that you must also bind the claim to the volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#binding
	//
	Bind(claim IPersistentVolumeClaim)
	// Reserve a `PersistentVolume` by creating a `PersistentVolumeClaim` that is wired to claim this volume.
	//
	// Note that this method will throw in case the volume is already claimed.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reserving-a-persistentvolume
	//
	Reserve() PersistentVolumeClaim
	// Returns a string representation of this construct.
	ToString() *string
}

GCEPersistentDisk represents a GCE Disk resource that is attached to a kubelet's host machine and then exposed to the pod.

Provisioned by an admin. See: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk

func NewGCEPersistentDiskPersistentVolume ΒΆ

func NewGCEPersistentDiskPersistentVolume(scope constructs.Construct, id *string, props *GCEPersistentDiskPersistentVolumeProps) GCEPersistentDiskPersistentVolume

type GCEPersistentDiskPersistentVolumeProps ΒΆ

type GCEPersistentDiskPersistentVolumeProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Contains all ways the volume can be mounted.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes
	//
	AccessModes *[]PersistentVolumeAccessMode `field:"optional" json:"accessModes" yaml:"accessModes"`
	// Part of a bi-directional binding between PersistentVolume and PersistentVolumeClaim.
	//
	// Expected to be non-nil when bound.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#binding
	//
	Claim IPersistentVolumeClaim `field:"optional" json:"claim" yaml:"claim"`
	// A list of mount options, e.g. ["ro", "soft"]. Not validated - mount will simply fail if one is invalid.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options
	//
	MountOptions *[]*string `field:"optional" json:"mountOptions" yaml:"mountOptions"`
	// When a user is done with their volume, they can delete the PVC objects from the API that allows reclamation of the resource.
	//
	// The reclaim policy tells the cluster what to do with
	// the volume after it has been released of its claim.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#reclaiming
	//
	ReclaimPolicy PersistentVolumeReclaimPolicy `field:"optional" json:"reclaimPolicy" yaml:"reclaimPolicy"`
	// What is the storage capacity of this volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
	//
	Storage cdk8s.Size `field:"optional" json:"storage" yaml:"storage"`
	// Name of StorageClass to which this persistent volume belongs.
	StorageClassName *string `field:"optional" json:"storageClassName" yaml:"storageClassName"`
	// Defines what type of volume is required by the claim.
	VolumeMode PersistentVolumeMode `field:"optional" json:"volumeMode" yaml:"volumeMode"`
	// Unique name of the PD resource in GCE.
	//
	// Used to identify the disk in GCE.
	// See: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
	//
	PdName *string `field:"required" json:"pdName" yaml:"pdName"`
	// Filesystem type of the volume that you want to mount.
	//
	// Tip: Ensure that the filesystem type is supported by the host operating system.
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	FsType *string `field:"optional" json:"fsType" yaml:"fsType"`
	// The partition in the volume that you want to mount.
	//
	// If omitted, the default is to mount by volume name.
	// Examples: For volume /dev/sda1, you specify the partition as "1".
	// Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
	Partition *float64 `field:"optional" json:"partition" yaml:"partition"`
	// Specify "true" to force and set the ReadOnly property in VolumeMounts to "true".
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Properties for `GCEPersistentDiskPersistentVolume`.

type GCEPersistentDiskVolumeOptions ΒΆ

type GCEPersistentDiskVolumeOptions struct {
	// Filesystem type of the volume that you want to mount.
	//
	// Tip: Ensure that the filesystem type is supported by the host operating system.
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	FsType *string `field:"optional" json:"fsType" yaml:"fsType"`
	// The volume name.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The partition in the volume that you want to mount.
	//
	// If omitted, the default is to mount by volume name.
	// Examples: For volume /dev/sda1, you specify the partition as "1".
	// Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
	Partition *float64 `field:"optional" json:"partition" yaml:"partition"`
	// Specify "true" to force and set the ReadOnly property in VolumeMounts to "true".
	// See: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
	//
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Options of `Volume.fromGcePersistentDisk`.

type Group ΒΆ

type Group interface {
	constructs.Construct
	ISubject
	ApiGroup() *string
	Kind() *string
	Name() *string
	// The tree node.
	Node() constructs.Node
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

Represents a group.

func Group_FromName ΒΆ

func Group_FromName(scope constructs.Construct, id *string, name *string) Group

Reference a group by name.

type Handler ΒΆ

type Handler interface {
}

Defines a specific action that should be taken.

func Handler_FromCommand ΒΆ

func Handler_FromCommand(command *[]*string) Handler

Defines a handler based on a command which is executed within the container.

func Handler_FromHttpGet ΒΆ

func Handler_FromHttpGet(path *string, options *HandlerFromHttpGetOptions) Handler

Defines a handler based on an HTTP GET request to the IP address of the container.

func Handler_FromTcpSocket ΒΆ

func Handler_FromTcpSocket(options *HandlerFromTcpSocketOptions) Handler

Defines a handler based opening a connection to a TCP socket on the container.

type HandlerFromHttpGetOptions ΒΆ

type HandlerFromHttpGetOptions struct {
	// The TCP port to use when sending the GET request.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
}

Options for `Handler.fromHttpGet`.

type HandlerFromTcpSocketOptions ΒΆ

type HandlerFromTcpSocketOptions struct {
	// The host name to connect to on the container.
	Host *string `field:"optional" json:"host" yaml:"host"`
	// The TCP port to connect to on the container.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
}

Options for `Handler.fromTcpSocket`.

type HostAlias ΒΆ

type HostAlias struct {
	// Hostnames for the chosen IP address.
	Hostnames *[]*string `field:"required" json:"hostnames" yaml:"hostnames"`
	// IP address of the host file entry.
	Ip *string `field:"required" json:"ip" yaml:"ip"`
}

HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's /etc/hosts file.

type HostPathVolumeOptions ΒΆ

type HostPathVolumeOptions struct {
	// The path of the directory on the host.
	Path *string `field:"required" json:"path" yaml:"path"`
	// The expected type of the path found on the host.
	Type HostPathVolumeType `field:"optional" json:"type" yaml:"type"`
}

Options for a HostPathVolume-based volume.

type HostPathVolumeType ΒΆ

type HostPathVolumeType string

Host path types.

const (
	// Empty string (default) is for backward compatibility, which means that no checks will be performed before mounting the hostPath volume.
	HostPathVolumeType_DEFAULT HostPathVolumeType = "DEFAULT"
	// If nothing exists at the given path, an empty directory will be created there as needed with permission set to 0755, having the same group and ownership with Kubelet.
	HostPathVolumeType_DIRECTORY_OR_CREATE HostPathVolumeType = "DIRECTORY_OR_CREATE"
	// A directory must exist at the given path.
	HostPathVolumeType_DIRECTORY HostPathVolumeType = "DIRECTORY"
	// If nothing exists at the given path, an empty file will be created there as needed with permission set to 0644, having the same group and ownership with Kubelet.
	HostPathVolumeType_FILE_OR_CREATE HostPathVolumeType = "FILE_OR_CREATE"
	// A file must exist at the given path.
	HostPathVolumeType_FILE HostPathVolumeType = "FILE"
	// A UNIX socket must exist at the given path.
	HostPathVolumeType_SOCKET HostPathVolumeType = "SOCKET"
	// A character device must exist at the given path.
	HostPathVolumeType_CHAR_DEVICE HostPathVolumeType = "CHAR_DEVICE"
	// A block device must exist at the given path.
	HostPathVolumeType_BLOCK_DEVICE HostPathVolumeType = "BLOCK_DEVICE"
)

type HttpGetProbeOptions ΒΆ

type HttpGetProbeOptions struct {
	// Minimum consecutive failures for the probe to be considered failed after having succeeded.
	//
	// Defaults to 3. Minimum value is 1.
	FailureThreshold *float64 `field:"optional" json:"failureThreshold" yaml:"failureThreshold"`
	// Number of seconds after the container has started before liveness probes are initiated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
	//
	InitialDelaySeconds cdk8s.Duration `field:"optional" json:"initialDelaySeconds" yaml:"initialDelaySeconds"`
	// How often (in seconds) to perform the probe.
	//
	// Default to 10 seconds. Minimum value is 1.
	PeriodSeconds cdk8s.Duration `field:"optional" json:"periodSeconds" yaml:"periodSeconds"`
	// Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1.
	//
	// Must be 1 for liveness and startup. Minimum value is 1.
	SuccessThreshold *float64 `field:"optional" json:"successThreshold" yaml:"successThreshold"`
	// Number of seconds after which the probe times out.
	//
	// Defaults to 1 second. Minimum value is 1.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
	//
	TimeoutSeconds cdk8s.Duration `field:"optional" json:"timeoutSeconds" yaml:"timeoutSeconds"`
	// The TCP port to use when sending the GET request.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
	// Scheme to use for connecting to the host (HTTP or HTTPS).
	Scheme ConnectionScheme `field:"optional" json:"scheme" yaml:"scheme"`
}

Options for `Probe.fromHttpGet()`.

type HttpIngressPathType ΒΆ

type HttpIngressPathType string

Specify how the path is matched against request paths. See: https://kubernetes.io/docs/concepts/services-networking/ingress/#path-types

const (
	// Matches the URL path exactly.
	HttpIngressPathType_PREFIX HttpIngressPathType = "PREFIX"
	// Matches based on a URL path prefix split by '/'.
	HttpIngressPathType_EXACT HttpIngressPathType = "EXACT"
	// Matching is specified by the underlying IngressClass.
	HttpIngressPathType_IMPLEMENTATION_SPECIFIC HttpIngressPathType = "IMPLEMENTATION_SPECIFIC"
)

type IApiEndpoint ΒΆ

type IApiEndpoint interface {
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
}

An API Endpoint can either be a resource descriptor (e.g /pods) or a non resource url (e.g /healthz). It must be one or the other, and not both.

type IApiResource ΒΆ

type IApiResource interface {
	// The group portion of the API version (e.g. `authorization.k8s.io`).
	ApiGroup() *string
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	//
	// Example:
	//   - "pods" or "pods/log"
	//
	// See: https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-resources
	//
	ResourceType() *string
}

Represents a resource or collection of resources.

type IClusterRole ΒΆ

type IClusterRole interface {
	IResource
}

Represents a cluster-level role.

func ClusterRole_FromClusterRoleName ΒΆ

func ClusterRole_FromClusterRoleName(scope constructs.Construct, id *string, name *string) IClusterRole

Imports a role from the cluster as a reference.

type IConfigMap ΒΆ

type IConfigMap interface {
	IResource
}

Represents a config map.

func ConfigMap_FromConfigMapName ΒΆ

func ConfigMap_FromConfigMapName(scope constructs.Construct, id *string, name *string) IConfigMap

Represents a ConfigMap created elsewhere.

type INamespaceSelector ΒΆ

type INamespaceSelector interface {
	constructs.IConstruct
	// Return the configuration of this selector.
	ToNamespaceSelectorConfig() *NamespaceSelectorConfig
}

Represents an object that can select namespaces.

type INetworkPolicyPeer ΒΆ

type INetworkPolicyPeer interface {
	constructs.IConstruct
	// Return the configuration of this peer.
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	ToPodSelector() IPodSelector
}

Describes a peer to allow traffic to/from.

type IPersistentVolume ΒΆ

type IPersistentVolume interface {
	IResource
}

Contract of a `PersistentVolumeClaim`.

func AwsElasticBlockStorePersistentVolume_FromPersistentVolumeName ΒΆ

func AwsElasticBlockStorePersistentVolume_FromPersistentVolumeName(scope constructs.Construct, id *string, volumeName *string) IPersistentVolume

Imports a pv from the cluster as a reference.

func AzureDiskPersistentVolume_FromPersistentVolumeName ΒΆ

func AzureDiskPersistentVolume_FromPersistentVolumeName(scope constructs.Construct, id *string, volumeName *string) IPersistentVolume

Imports a pv from the cluster as a reference.

func GCEPersistentDiskPersistentVolume_FromPersistentVolumeName ΒΆ

func GCEPersistentDiskPersistentVolume_FromPersistentVolumeName(scope constructs.Construct, id *string, volumeName *string) IPersistentVolume

Imports a pv from the cluster as a reference.

func PersistentVolume_FromPersistentVolumeName ΒΆ

func PersistentVolume_FromPersistentVolumeName(scope constructs.Construct, id *string, volumeName *string) IPersistentVolume

Imports a pv from the cluster as a reference.

type IPersistentVolumeClaim ΒΆ

type IPersistentVolumeClaim interface {
	IResource
}

Contract of a `PersistentVolumeClaim`.

func PersistentVolumeClaim_FromClaimName ΒΆ

func PersistentVolumeClaim_FromClaimName(scope constructs.Construct, id *string, claimName *string) IPersistentVolumeClaim

Imports a pvc from the cluster as a reference.

type IPodSelector ΒΆ

type IPodSelector interface {
	constructs.IConstruct
	// Return the configuration of this selector.
	ToPodSelectorConfig() *PodSelectorConfig
}

Represents an object that can select pods.

type IResource ΒΆ

type IResource interface {
	constructs.IConstruct
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	// The Kubernetes name of this resource.
	Name() *string
}

Represents a resource.

type IRole ΒΆ

type IRole interface {
	IResource
}

A reference to any Role or ClusterRole.

func Role_FromRoleName ΒΆ

func Role_FromRoleName(scope constructs.Construct, id *string, name *string) IRole

Imports a role from the cluster as a reference.

type ISecret ΒΆ

type ISecret interface {
	IResource
}

func BasicAuthSecret_FromSecretName ΒΆ

func BasicAuthSecret_FromSecretName(scope constructs.Construct, id *string, name *string) ISecret

Imports a secret from the cluster as a reference.

func DockerConfigSecret_FromSecretName ΒΆ

func DockerConfigSecret_FromSecretName(scope constructs.Construct, id *string, name *string) ISecret

Imports a secret from the cluster as a reference.

func Secret_FromSecretName ΒΆ

func Secret_FromSecretName(scope constructs.Construct, id *string, name *string) ISecret

Imports a secret from the cluster as a reference.

func ServiceAccountTokenSecret_FromSecretName ΒΆ

func ServiceAccountTokenSecret_FromSecretName(scope constructs.Construct, id *string, name *string) ISecret

Imports a secret from the cluster as a reference.

func SshAuthSecret_FromSecretName ΒΆ

func SshAuthSecret_FromSecretName(scope constructs.Construct, id *string, name *string) ISecret

Imports a secret from the cluster as a reference.

func TlsSecret_FromSecretName ΒΆ

func TlsSecret_FromSecretName(scope constructs.Construct, id *string, name *string) ISecret

Imports a secret from the cluster as a reference.

type IServiceAccount ΒΆ

type IServiceAccount interface {
	IResource
}

func ServiceAccount_FromServiceAccountName ΒΆ

func ServiceAccount_FromServiceAccountName(scope constructs.Construct, id *string, name *string) IServiceAccount

Imports a service account from the cluster as a reference.

type IStorage ΒΆ

type IStorage interface {
	constructs.IConstruct
	// Convert the piece of storage into a concrete volume.
	AsVolume() Volume
}

Represents a piece of storage in the cluster.

type ISubject ΒΆ

type ISubject interface {
	constructs.IConstruct
	// Return the subject configuration.
	ToSubjectConfiguration() *SubjectConfiguration
}

Represents an object that can be used as a role binding subject.

type ImagePullPolicy ΒΆ

type ImagePullPolicy string
const (
	// Every time the kubelet launches a container, the kubelet queries the container image registry to resolve the name to an image digest.
	//
	// If the kubelet has a container image with that exact
	// digest cached locally, the kubelet uses its cached image; otherwise, the kubelet downloads
	// (pulls) the image with the resolved digest, and uses that image to launch the container.
	//
	// Default is Always if ImagePullPolicy is omitted and either the image tag is :latest or
	// the image tag is omitted.
	ImagePullPolicy_ALWAYS ImagePullPolicy = "ALWAYS"
	// The image is pulled only if it is not already present locally.
	//
	// Default is IfNotPresent if ImagePullPolicy is omitted and the image tag is present but
	// not :latest.
	ImagePullPolicy_IF_NOT_PRESENT ImagePullPolicy = "IF_NOT_PRESENT"
	// The image is assumed to exist locally.
	//
	// No attempt is made to pull the image.
	ImagePullPolicy_NEVER ImagePullPolicy = "NEVER"
)

type Ingress ΒΆ

type Ingress interface {
	Resource
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Defines the default backend for this ingress.
	//
	// A default backend capable of
	// servicing requests that don't match any rule.
	AddDefaultBackend(backend IngressBackend)
	// Specify a default backend for a specific host name.
	//
	// This backend will be used as a catch-all for requests
	// targeted to this host name (the `Host` header matches this value).
	AddHostDefaultBackend(host *string, backend IngressBackend)
	// Adds an ingress rule applied to requests to a specific host and a specific HTTP path (the `Host` header matches this value).
	AddHostRule(host *string, path *string, backend IngressBackend, pathType HttpIngressPathType)
	// Adds an ingress rule applied to requests sent to a specific HTTP path.
	AddRule(path *string, backend IngressBackend, pathType HttpIngressPathType)
	// Adds rules to this ingress.
	AddRules(rules ...*IngressRule)
	AddTls(tls *[]*IngressTls)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
}

Ingress is a collection of rules that allow inbound connections to reach the endpoints defined by a backend.

An Ingress can be configured to give services externally-reachable urls, load balance traffic, terminate SSL, offer name based virtual hosting etc.

func NewIngress ΒΆ

func NewIngress(scope constructs.Construct, id *string, props *IngressProps) Ingress

type IngressBackend ΒΆ

type IngressBackend interface {
}

The backend for an ingress path.

func IngressBackend_FromResource ΒΆ

func IngressBackend_FromResource(resource IResource) IngressBackend

A Resource backend is an ObjectRef to another Kubernetes resource within the same namespace as the Ingress object.

A common usage for a Resource backend is to ingress data to an object storage backend with static assets.

func IngressBackend_FromService ΒΆ

func IngressBackend_FromService(serv Service, options *ServiceIngressBackendOptions) IngressBackend

A Kubernetes `Service` to use as the backend for this path.

type IngressProps ΒΆ

type IngressProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// The default backend services requests that do not match any rule.
	//
	// Using this option or the `addDefaultBackend()` method is equivalent to
	// adding a rule with both `path` and `host` undefined.
	DefaultBackend IngressBackend `field:"optional" json:"defaultBackend" yaml:"defaultBackend"`
	// Routing rules for this ingress.
	//
	// Each rule must define an `IngressBackend` that will receive the requests
	// that match this rule. If both `host` and `path` are not specifiec, this
	// backend will be used as the default backend of the ingress.
	//
	// You can also add rules later using `addRule()`, `addHostRule()`,
	// `addDefaultBackend()` and `addHostDefaultBackend()`.
	Rules *[]*IngressRule `field:"optional" json:"rules" yaml:"rules"`
	// TLS settings for this ingress.
	//
	// Using this option tells the ingress controller to expose a TLS endpoint.
	// Currently the Ingress only supports a single TLS port, 443. If multiple
	// members of this list specify different hosts, they will be multiplexed on
	// the same port according to the hostname specified through the SNI TLS
	// extension, if the ingress controller fulfilling the ingress supports SNI.
	Tls *[]*IngressTls `field:"optional" json:"tls" yaml:"tls"`
}

Properties for `Ingress`.

type IngressRule ΒΆ

type IngressRule struct {
	// Backend defines the referenced service endpoint to which the traffic will be forwarded to.
	Backend IngressBackend `field:"required" json:"backend" yaml:"backend"`
	// Host is the fully qualified domain name of a network host, as defined by RFC 3986.
	//
	// Note the following deviations from the "host" part of the URI as
	// defined in the RFC: 1. IPs are not allowed. Currently an IngressRuleValue
	// can only apply to the IP in the Spec of the parent Ingress. 2. The `:`
	// delimiter is not respected because ports are not allowed. Currently the
	// port of an Ingress is implicitly :80 for http and :443 for https. Both
	// these may change in the future. Incoming requests are matched against the
	// host before the IngressRuleValue.
	Host *string `field:"optional" json:"host" yaml:"host"`
	// Path is an extended POSIX regex as defined by IEEE Std 1003.1, (i.e this follows the egrep/unix syntax, not the perl syntax) matched against the path of an incoming request. Currently it can contain characters disallowed from the conventional "path" part of a URL as defined by RFC 3986. Paths must begin with a '/'.
	Path *string `field:"optional" json:"path" yaml:"path"`
	// Specify how the path is matched against request paths.
	//
	// By default, path
	// types will be matched by prefix.
	// See: https://kubernetes.io/docs/concepts/services-networking/ingress/#path-types
	//
	PathType HttpIngressPathType `field:"optional" json:"pathType" yaml:"pathType"`
}

Represents the rules mapping the paths under a specified host to the related backend services.

Incoming requests are first evaluated for a host match, then routed to the backend associated with the matching path.

type IngressTls ΒΆ

type IngressTls struct {
	// Hosts are a list of hosts included in the TLS certificate.
	//
	// The values in
	// this list must match the name/s used in the TLS Secret.
	Hosts *[]*string `field:"optional" json:"hosts" yaml:"hosts"`
	// Secret is the secret that contains the certificate and key used to terminate SSL traffic on 443.
	//
	// If the SNI host in a listener conflicts with
	// the "Host" header field used by an IngressRule, the SNI host is used for
	// termination and value of the Host header is used for routing.
	Secret ISecret `field:"optional" json:"secret" yaml:"secret"`
}

Represents the TLS configuration mapping that is passed to the ingress controller for SSL termination.

type Job ΒΆ

type Job interface {
	Workload
	// Duration before job is terminated.
	//
	// If undefined, there is no deadline.
	ActiveDeadline() cdk8s.Duration
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	// Number of retries before marking failed.
	BackoffLimit() *float64
	Connections() PodConnections
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	// The expression matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add expression matchers.
	MatchExpressions() *[]*LabelSelectorRequirement
	// The label matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add label matchers.
	MatchLabels() *map[string]*string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The metadata of pods in this workload.
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	Scheduling() WorkloadScheduling
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	// TTL before the job is deleted after it is finished.
	TtlAfterFinished() cdk8s.Duration
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Configure selectors for this workload.
	Select(selectors ...LabelSelector)
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

A Job creates one or more Pods and ensures that a specified number of them successfully terminate.

As pods successfully complete, the Job tracks the successful completions. When a specified number of successful completions is reached, the task (ie, Job) is complete. Deleting a Job will clean up the Pods it created. A simple case is to create one Job object in order to reliably run one Pod to completion. The Job object will start a new Pod if the first Pod fails or is deleted (for example due to a node hardware failure or a node reboot). You can also use a Job to run multiple Pods in parallel.

func NewJob ΒΆ

func NewJob(scope constructs.Construct, id *string, props *JobProps) Job

type JobProps ΒΆ

type JobProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
	// The pod metadata of this workload.
	PodMetadata *cdk8s.ApiObjectMetadata `field:"optional" json:"podMetadata" yaml:"podMetadata"`
	// Automatically allocates a pod label selector for this workload and add it to the pod metadata.
	//
	// This ensures this workload manages pods created by
	// its pod template.
	Select *bool `field:"optional" json:"select" yaml:"select"`
	// Automatically spread pods across hostname and zones.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#internal-default-constraints
	//
	Spread *bool `field:"optional" json:"spread" yaml:"spread"`
	// Specifies the duration the job may be active before the system tries to terminate it.
	ActiveDeadline cdk8s.Duration `field:"optional" json:"activeDeadline" yaml:"activeDeadline"`
	// Specifies the number of retries before marking this job failed.
	BackoffLimit *float64 `field:"optional" json:"backoffLimit" yaml:"backoffLimit"`
	// Limits the lifetime of a Job that has finished execution (either Complete or Failed).
	//
	// If this field is set, after the Job finishes, it is eligible to
	// be automatically deleted. When the Job is being deleted, its lifecycle
	// guarantees (e.g. finalizers) will be honored. If this field is set to zero,
	// the Job becomes eligible to be deleted immediately after it finishes. This
	// field is alpha-level and is only honored by servers that enable the
	// `TTLAfterFinished` feature.
	TtlAfterFinished cdk8s.Duration `field:"optional" json:"ttlAfterFinished" yaml:"ttlAfterFinished"`
}

Properties for `Job`.

type LabelExpression ΒΆ

type LabelExpression interface {
	Key() *string
	Operator() *string
	Values() *[]*string
}

Represents a query that can be performed against resources with labels.

func LabelExpression_DoesNotExist ΒΆ

func LabelExpression_DoesNotExist(key *string) LabelExpression

Requires label `key` to not exist.

func LabelExpression_Exists ΒΆ

func LabelExpression_Exists(key *string) LabelExpression

Requires label `key` to exist.

func LabelExpression_In ΒΆ

func LabelExpression_In(key *string, values *[]*string) LabelExpression

Requires value of label `key` to be one of `values`.

func LabelExpression_NotIn ΒΆ

func LabelExpression_NotIn(key *string, values *[]*string) LabelExpression

Requires value of label `key` to be none of `values`.

type LabelSelector ΒΆ

type LabelSelector interface {
	IsEmpty() *bool
}

Match a resource by labels.

func LabelSelector_Of ΒΆ

func LabelSelector_Of(options *LabelSelectorOptions) LabelSelector

type LabelSelectorOptions ΒΆ

type LabelSelectorOptions struct {
	// Expression based label matchers.
	Expressions *[]LabelExpression `field:"optional" json:"expressions" yaml:"expressions"`
	// Strict label matchers.
	Labels *map[string]*string `field:"optional" json:"labels" yaml:"labels"`
}

Options for `LabelSelector.of`.

type LabelSelectorRequirement ΒΆ

type LabelSelectorRequirement struct {
	// The label key that the selector applies to.
	Key *string `field:"required" json:"key" yaml:"key"`
	// Represents a key's relationship to a set of values.
	Operator *string `field:"required" json:"operator" yaml:"operator"`
	// An array of string values.
	//
	// If the operator is In or NotIn, the values array
	// must be non-empty. If the operator is Exists or DoesNotExist,
	// the values array must be empty. This array is replaced during a strategic merge patch.
	Values *[]*string `field:"optional" json:"values" yaml:"values"`
}

A label selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

type LabeledNode ΒΆ

type LabeledNode interface {
	LabelSelector() *[]NodeLabelQuery
}

A node that is matched by label selectors.

func NewLabeledNode ΒΆ

func NewLabeledNode(labelSelector *[]NodeLabelQuery) LabeledNode

func Node_Labeled ΒΆ

func Node_Labeled(labelSelector ...NodeLabelQuery) LabeledNode

Match a node by its labels.

type MemoryResources ΒΆ

type MemoryResources struct {
	Limit   cdk8s.Size `field:"optional" json:"limit" yaml:"limit"`
	Request cdk8s.Size `field:"optional" json:"request" yaml:"request"`
}

Memory request and limit.

type MountOptions ΒΆ

type MountOptions struct {
	// Determines how mounts are propagated from the host to container and the other way around.
	//
	// When not set, MountPropagationNone is used.
	//
	// Mount propagation allows for sharing volumes mounted by a Container to
	// other Containers in the same Pod, or even to other Pods on the same node.
	Propagation MountPropagation `field:"optional" json:"propagation" yaml:"propagation"`
	// Mounted read-only if true, read-write otherwise (false or unspecified).
	//
	// Defaults to false.
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
	// Path within the volume from which the container's volume should be mounted.).
	SubPath *string `field:"optional" json:"subPath" yaml:"subPath"`
	// Expanded path within the volume from which the container's volume should be mounted.
	//
	// Behaves similarly to SubPath but environment variable references
	// $(VAR_NAME) are expanded using the container's environment. Defaults to ""
	// (volume's root).
	//
	// `subPathExpr` and `subPath` are mutually exclusive.
	SubPathExpr *string `field:"optional" json:"subPathExpr" yaml:"subPathExpr"`
}

Options for mounts.

type MountPropagation ΒΆ

type MountPropagation string
const (
	// This volume mount will not receive any subsequent mounts that are mounted to this volume or any of its subdirectories by the host.
	//
	// In similar
	// fashion, no mounts created by the Container will be visible on the host.
	//
	// This is the default mode.
	//
	// This mode is equal to `private` mount propagation as described in the Linux
	// kernel documentation.
	MountPropagation_NONE MountPropagation = "NONE"
	// This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
	//
	// In other words, if the host mounts anything inside the volume mount, the
	// Container will see it mounted there.
	//
	// Similarly, if any Pod with Bidirectional mount propagation to the same
	// volume mounts anything there, the Container with HostToContainer mount
	// propagation will see it.
	//
	// This mode is equal to `rslave` mount propagation as described in the Linux
	// kernel documentation.
	MountPropagation_HOST_TO_CONTAINER MountPropagation = "HOST_TO_CONTAINER"
	// This volume mount behaves the same the HostToContainer mount.
	//
	// In addition,
	// all volume mounts created by the Container will be propagated back to the
	// host and to all Containers of all Pods that use the same volume
	//
	// A typical use case for this mode is a Pod with a FlexVolume or CSI driver
	// or a Pod that needs to mount something on the host using a hostPath volume.
	//
	// This mode is equal to `rshared` mount propagation as described in the Linux
	// kernel documentation
	//
	// Caution: Bidirectional mount propagation can be dangerous. It can damage
	// the host operating system and therefore it is allowed only in privileged
	// Containers. Familiarity with Linux kernel behavior is strongly recommended.
	// In addition, any volume mounts created by Containers in Pods must be
	// destroyed (unmounted) by the Containers on termination.
	MountPropagation_BIDIRECTIONAL MountPropagation = "BIDIRECTIONAL"
)

type NamedNode ΒΆ

type NamedNode interface {
	Name() *string
}

A node that is matched by its name.

func NewNamedNode ΒΆ

func NewNamedNode(name *string) NamedNode

func Node_Named ΒΆ

func Node_Named(nodeName *string) NamedNode

Match a node by its name.

type Namespace ΒΆ

type Namespace interface {
	Resource
	INamespaceSelector
	INetworkPolicyPeer
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Return the configuration of this selector.
	// See: INamespaceSelector.toNamespaceSelectorConfig()
	//
	ToNamespaceSelectorConfig() *NamespaceSelectorConfig
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Returns a string representation of this construct.
	ToString() *string
}

In Kubernetes, namespaces provides a mechanism for isolating groups of resources within a single cluster.

Names of resources need to be unique within a namespace, but not across namespaces. Namespace-based scoping is applicable only for namespaced objects (e.g. Deployments, Services, etc) and not for cluster-wide objects (e.g. StorageClass, Nodes, PersistentVolumes, etc).

func NewNamespace ΒΆ

func NewNamespace(scope constructs.Construct, id *string, props *NamespaceProps) Namespace

type NamespaceProps ΒΆ

type NamespaceProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
}

Properties for `Namespace`.

type NamespaceSelectorConfig ΒΆ

type NamespaceSelectorConfig struct {
	// A selector to select namespaces by labels.
	LabelSelector LabelSelector `field:"optional" json:"labelSelector" yaml:"labelSelector"`
	// A list of names to select namespaces by names.
	Names *[]*string `field:"optional" json:"names" yaml:"names"`
}

Configuration for selecting namespaces.

type Namespaces ΒΆ

type Namespaces interface {
	constructs.Construct
	INamespaceSelector
	INetworkPolicyPeer
	// The tree node.
	Node() constructs.Node
	// Return the configuration of this selector.
	// See: INamespaceSelector.toNamespaceSelectorConfig()
	//
	ToNamespaceSelectorConfig() *NamespaceSelectorConfig
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Returns a string representation of this construct.
	ToString() *string
}

Represents a group of namespaces.

func Namespaces_All ΒΆ

func Namespaces_All(scope constructs.Construct, id *string) Namespaces

Select all namespaces.

func Namespaces_Select ΒΆ

func Namespaces_Select(scope constructs.Construct, id *string, options *NamespacesSelectOptions) Namespaces

Select specific namespaces.

func NewNamespaces ΒΆ

func NewNamespaces(scope constructs.Construct, id *string, expressions *[]LabelExpression, names *[]*string, labels *map[string]*string) Namespaces

type NamespacesSelectOptions ΒΆ

type NamespacesSelectOptions struct {
	// Namespaces must satisfy these selectors.
	//
	// The selectors query labels, just like the `labels` property, but they
	// provide a more advanced matching mechanism.
	Expressions *[]LabelExpression `field:"optional" json:"expressions" yaml:"expressions"`
	// Labels the namespaces must have.
	//
	// This is equivalent to using an 'Is' selector.
	Labels *map[string]*string `field:"optional" json:"labels" yaml:"labels"`
	// Namespaces names must be one of these.
	Names *[]*string `field:"optional" json:"names" yaml:"names"`
}

Options for `Namespaces.select`.

type NetworkPolicy ΒΆ

type NetworkPolicy interface {
	Resource
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Allow outgoing traffic to the peer.
	//
	// If ports are not passed, traffic will be allowed on all ports.
	AddEgressRule(peer INetworkPolicyPeer, ports *[]NetworkPolicyPort)
	// Allow incoming traffic from the peer.
	//
	// If ports are not passed, traffic will be allowed on all ports.
	AddIngressRule(peer INetworkPolicyPeer, ports *[]NetworkPolicyPort)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
}

Control traffic flow at the IP address or port level (OSI layer 3 or 4), network policies are an application-centric construct which allow you to specify how a pod is allowed to communicate with various network peers.

  • Outgoing traffic is allowed if there are no network policies selecting the pod (and cluster policy otherwise allows the traffic), OR if the traffic matches at least one egress rule across all of the network policies that select the pod.
  • Incoming traffic is allowed to a pod if there are no network policies selecting the pod (and cluster policy otherwise allows the traffic), OR if the traffic source is the pod's local node, OR if the traffic matches at least one ingress rule across all of the network policies that select the pod.

Network policies do not conflict; they are additive. If any policy or policies apply to a given pod for a given direction, the connections allowed in that direction from that pod is the union of what the applicable policies allow. Thus, order of evaluation does not affect the policy result.

For a connection from a source pod to a destination pod to be allowed, both the egress policy on the source pod and the ingress policy on the destination pod need to allow the connection. If either side does not allow the connection, it will not happen. See: https://kubernetes.io/docs/concepts/services-networking/network-policies/#networkpolicy-resource

func NewNetworkPolicy ΒΆ

func NewNetworkPolicy(scope constructs.Construct, id *string, props *NetworkPolicyProps) NetworkPolicy

type NetworkPolicyAddEgressRuleOptions ΒΆ

type NetworkPolicyAddEgressRuleOptions struct {
	// Ports the rule should allow outgoing traffic to.
	Ports *[]NetworkPolicyPort `field:"optional" json:"ports" yaml:"ports"`
}

Options for `NetworkPolicy.addEgressRule`.

type NetworkPolicyIpBlock ΒΆ

type NetworkPolicyIpBlock interface {
	constructs.Construct
	INetworkPolicyPeer
	// A string representing the IP Block Valid examples are "192.168.1.1/24" or "2001:db9::/64".
	Cidr() *string
	// A slice of CIDRs that should not be included within an IP Block Valid examples are "192.168.1.1/24" or "2001:db9::/64". Except values will be rejected if they are outside the CIDR range.
	Except() *[]*string
	// The tree node.
	Node() constructs.Node
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Returns a string representation of this construct.
	ToString() *string
}

Describes a particular CIDR (Ex.

"192.168.1.1/24","2001:db9::/64") that is allowed to the pods matched by a network policy selector. The except entry describes CIDRs that should not be included within this rule.

func NetworkPolicyIpBlock_AnyIpv4 ΒΆ

func NetworkPolicyIpBlock_AnyIpv4(scope constructs.Construct, id *string) NetworkPolicyIpBlock

Any IPv4 address.

func NetworkPolicyIpBlock_AnyIpv6 ΒΆ

func NetworkPolicyIpBlock_AnyIpv6(scope constructs.Construct, id *string) NetworkPolicyIpBlock

Any IPv6 address.

func NetworkPolicyIpBlock_Ipv4 ΒΆ

func NetworkPolicyIpBlock_Ipv4(scope constructs.Construct, id *string, cidrIp *string, except *[]*string) NetworkPolicyIpBlock

Create an IPv4 peer from a CIDR.

func NetworkPolicyIpBlock_Ipv6 ΒΆ

func NetworkPolicyIpBlock_Ipv6(scope constructs.Construct, id *string, cidrIp *string, except *[]*string) NetworkPolicyIpBlock

Create an IPv6 peer from a CIDR.

type NetworkPolicyPeerConfig ΒΆ

type NetworkPolicyPeerConfig struct {
	// The ip block this peer represents.
	IpBlock NetworkPolicyIpBlock `field:"optional" json:"ipBlock" yaml:"ipBlock"`
	// The pod selector this peer represents.
	PodSelector *PodSelectorConfig `field:"optional" json:"podSelector" yaml:"podSelector"`
}

Configuration for network peers.

A peer can either by an ip block, or a selection of pods, not both.

type NetworkPolicyPort ΒΆ

type NetworkPolicyPort interface {
}

Describes a port to allow traffic on.

func NetworkPolicyPort_AllTcp ΒΆ

func NetworkPolicyPort_AllTcp() NetworkPolicyPort

Any TCP traffic.

func NetworkPolicyPort_AllUdp ΒΆ

func NetworkPolicyPort_AllUdp() NetworkPolicyPort

Any UDP traffic.

func NetworkPolicyPort_Of ΒΆ

func NetworkPolicyPort_Of(props *NetworkPolicyPortProps) NetworkPolicyPort

Custom port configuration.

func NetworkPolicyPort_Tcp ΒΆ

func NetworkPolicyPort_Tcp(port *float64) NetworkPolicyPort

Distinct TCP ports.

func NetworkPolicyPort_TcpRange ΒΆ

func NetworkPolicyPort_TcpRange(startPort *float64, endPort *float64) NetworkPolicyPort

A TCP port range.

func NetworkPolicyPort_Udp ΒΆ

func NetworkPolicyPort_Udp(port *float64) NetworkPolicyPort

Distinct UDP ports.

func NetworkPolicyPort_UdpRange ΒΆ

func NetworkPolicyPort_UdpRange(startPort *float64, endPort *float64) NetworkPolicyPort

A UDP port range.

type NetworkPolicyPortProps ΒΆ

type NetworkPolicyPortProps struct {
	// End port (relative to `port`).
	//
	// Only applies if `port` is defined.
	// Use this to specify a port range, rather that a specific one.
	EndPort *float64 `field:"optional" json:"endPort" yaml:"endPort"`
	// Specific port number.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
	// Protocol.
	Protocol NetworkProtocol `field:"optional" json:"protocol" yaml:"protocol"`
}

Properties for `NetworkPolicyPort`.

type NetworkPolicyProps ΒΆ

type NetworkPolicyProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Egress traffic configuration.
	Egress *NetworkPolicyTraffic `field:"optional" json:"egress" yaml:"egress"`
	// Ingress traffic configuration.
	Ingress *NetworkPolicyTraffic `field:"optional" json:"ingress" yaml:"ingress"`
	// Which pods does this policy object applies to.
	//
	// This can either be a single pod / workload, or a grouping of pods selected
	// via the `Pods.select` function. Rules is applied to any pods selected by this property.
	// Multiple network policies can select the same set of pods.
	// In this case, the rules for each are combined additively.
	//
	// Note that.
	Selector IPodSelector `field:"optional" json:"selector" yaml:"selector"`
}

Properties for `NetworkPolicy`.

type NetworkPolicyRule ΒΆ

type NetworkPolicyRule struct {
	// Peer this rule interacts with.
	Peer INetworkPolicyPeer `field:"required" json:"peer" yaml:"peer"`
	// The ports of the rule.
	Ports *[]NetworkPolicyPort `field:"optional" json:"ports" yaml:"ports"`
}

Describes a rule allowing traffic from / to pods matched by a network policy selector.

type NetworkPolicyTraffic ΒΆ

type NetworkPolicyTraffic struct {
	// Specifies the default behavior of the policy when no rules are defined.
	Default NetworkPolicyTrafficDefault `field:"optional" json:"default" yaml:"default"`
	// List of rules to be applied to the selected pods.
	//
	// If empty, the behavior of the policy is dictated by the `default` property.
	Rules *[]*NetworkPolicyRule `field:"optional" json:"rules" yaml:"rules"`
}

Describes how the network policy should configure egress / ingress traffic.

type NetworkPolicyTrafficDefault ΒΆ

type NetworkPolicyTrafficDefault string

Default behaviors of network traffic in policies.

const (
	// The policy denies all traffic.
	//
	// Since rules are additive, additional rules or policies can allow
	// specific traffic.
	NetworkPolicyTrafficDefault_DENY NetworkPolicyTrafficDefault = "DENY"
	// The policy allows all traffic (either ingress or egress).
	//
	// Since rules are additive, no additional rule or policies can
	// subsequently deny the traffic.
	NetworkPolicyTrafficDefault_ALLOW NetworkPolicyTrafficDefault = "ALLOW"
)

type NetworkProtocol ΒΆ

type NetworkProtocol string

Network protocols.

const (
	// TCP.
	NetworkProtocol_TCP NetworkProtocol = "TCP"
	// UDP.
	NetworkProtocol_UDP NetworkProtocol = "UDP"
	// SCTP.
	NetworkProtocol_SCTP NetworkProtocol = "SCTP"
)

type Node ΒΆ

type Node interface {
}

Represents a node in the cluster.

func NewNode ΒΆ

func NewNode() Node

type NodeLabelQuery ΒΆ

type NodeLabelQuery interface {
	Key() *string
	Operator() *string
	Values() *[]*string
}

Represents a query that can be performed against nodes with labels.

func NodeLabelQuery_DoesNotExist ΒΆ

func NodeLabelQuery_DoesNotExist(key *string) NodeLabelQuery

Requires label `key` to not exist.

func NodeLabelQuery_Exists ΒΆ

func NodeLabelQuery_Exists(key *string) NodeLabelQuery

Requires label `key` to exist.

func NodeLabelQuery_Gt ΒΆ

func NodeLabelQuery_Gt(key *string, values *[]*string) NodeLabelQuery

Requires value of label `key` to greater than all elements in `values`.

func NodeLabelQuery_In ΒΆ

func NodeLabelQuery_In(key *string, values *[]*string) NodeLabelQuery

Requires value of label `key` to be one of `values`.

func NodeLabelQuery_Is ΒΆ

func NodeLabelQuery_Is(key *string, value *string) NodeLabelQuery

Requires value of label `key` to equal `value`.

func NodeLabelQuery_Lt ΒΆ

func NodeLabelQuery_Lt(key *string, values *[]*string) NodeLabelQuery

Requires value of label `key` to less than all elements in `values`.

func NodeLabelQuery_NotIn ΒΆ

func NodeLabelQuery_NotIn(key *string, values *[]*string) NodeLabelQuery

Requires value of label `key` to be none of `values`.

type NodeTaintQuery ΒΆ

type NodeTaintQuery interface {
	Effect() *string
	EvictAfter() cdk8s.Duration
	Key() *string
	Operator() *string
	Value() *string
}

Taint queries that can be perfomed against nodes.

func NodeTaintQuery_Any ΒΆ

func NodeTaintQuery_Any() NodeTaintQuery

Matches any taint.

func NodeTaintQuery_Exists ΒΆ

func NodeTaintQuery_Exists(key *string, options *NodeTaintQueryOptions) NodeTaintQuery

Matches a tain with any value of a specific key.

func NodeTaintQuery_Is ΒΆ

func NodeTaintQuery_Is(key *string, value *string, options *NodeTaintQueryOptions) NodeTaintQuery

Matches a taint with a specific key and value.

type NodeTaintQueryOptions ΒΆ

type NodeTaintQueryOptions struct {
	// The taint effect to match.
	Effect TaintEffect `field:"optional" json:"effect" yaml:"effect"`
	// How much time should a pod that tolerates the `NO_EXECUTE` effect be bound to the node.
	//
	// Only applies for the `NO_EXECUTE` effect.
	EvictAfter cdk8s.Duration `field:"optional" json:"evictAfter" yaml:"evictAfter"`
}

Options for `NodeTaintQuery`.

type NonApiResource ΒΆ

type NonApiResource interface {
	IApiEndpoint
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
}

Factory for creating non api resources.

func NonApiResource_Of ΒΆ

func NonApiResource_Of(url *string) NonApiResource

type PathMapping ΒΆ

type PathMapping struct {
	// The relative path of the file to map the key to.
	//
	// May not be an absolute
	// path. May not contain the path element '..'. May not start with the string
	// '..'.
	Path *string `field:"required" json:"path" yaml:"path"`
	// Optional: mode bits to use on this file, must be a value between 0 and 0777.
	//
	// If not specified, the volume defaultMode will be used. This might be
	// in conflict with other options that affect the file mode, like fsGroup, and
	// the result can be other mode bits set.
	Mode *float64 `field:"optional" json:"mode" yaml:"mode"`
}

Maps a string key to a path within a volume.

type PercentOrAbsolute ΒΆ

type PercentOrAbsolute interface {
	Value() interface{}
	IsZero() *bool
}

Union like class repsenting either a ration in percents or an absolute number.

func PercentOrAbsolute_Absolute ΒΆ

func PercentOrAbsolute_Absolute(num *float64) PercentOrAbsolute

Absolute number.

func PercentOrAbsolute_Percent ΒΆ

func PercentOrAbsolute_Percent(percent *float64) PercentOrAbsolute

Percent ratio.

type PersistentVolume ΒΆ

type PersistentVolume interface {
	Resource
	IPersistentVolume
	IStorage
	// Access modes requirement of this claim.
	AccessModes() *[]PersistentVolumeAccessMode
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// PVC this volume is bound to.
	//
	// Undefined means this volume is not yet
	// claimed by any PVC.
	Claim() IPersistentVolumeClaim
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// Volume mode of this volume.
	Mode() PersistentVolumeMode
	// Mount options of this volume.
	MountOptions() *[]*string
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// Reclaim policy of this volume.
	ReclaimPolicy() PersistentVolumeReclaimPolicy
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Storage size of this volume.
	Storage() cdk8s.Size
	// Storage class this volume belongs to.
	StorageClassName() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Convert the piece of storage into a concrete volume.
	AsVolume() Volume
	// Bind a volume to a specific claim.
	//
	// Note that you must also bind the claim to the volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#binding
	//
	Bind(claim IPersistentVolumeClaim)
	// Reserve a `PersistentVolume` by creating a `PersistentVolumeClaim` that is wired to claim this volume.
	//
	// Note that this method will throw in case the volume is already claimed.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reserving-a-persistentvolume
	//
	Reserve() PersistentVolumeClaim
	// Returns a string representation of this construct.
	ToString() *string
}

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator or dynamically provisioned using Storage Classes.

It is a resource in the cluster just like a node is a cluster resource. PVs are volume plugins like Volumes, but have a lifecycle independent of any individual Pod that uses the PV. This API object captures the details of the implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

func NewPersistentVolume ΒΆ

func NewPersistentVolume(scope constructs.Construct, id *string, props *PersistentVolumeProps) PersistentVolume

type PersistentVolumeAccessMode ΒΆ

type PersistentVolumeAccessMode string

Access Modes.

const (
	// The volume can be mounted as read-write by a single node.
	//
	// ReadWriteOnce access mode still can allow multiple pods to access
	// the volume when the pods are running on the same node.
	PersistentVolumeAccessMode_READ_WRITE_ONCE PersistentVolumeAccessMode = "READ_WRITE_ONCE"
	// The volume can be mounted as read-only by many nodes.
	PersistentVolumeAccessMode_READ_ONLY_MANY PersistentVolumeAccessMode = "READ_ONLY_MANY"
	// The volume can be mounted as read-write by many nodes.
	PersistentVolumeAccessMode_READ_WRITE_MANY PersistentVolumeAccessMode = "READ_WRITE_MANY"
	// The volume can be mounted as read-write by a single Pod.
	//
	// Use ReadWriteOncePod access mode if you want to ensure that
	// only one pod across whole cluster can read that PVC or write to it.
	// This is only supported for CSI volumes and Kubernetes version 1.22+.
	PersistentVolumeAccessMode_READ_WRITE_ONCE_POD PersistentVolumeAccessMode = "READ_WRITE_ONCE_POD"
)

type PersistentVolumeClaim ΒΆ

type PersistentVolumeClaim interface {
	Resource
	IPersistentVolumeClaim
	// Access modes requirement of this claim.
	AccessModes() *[]PersistentVolumeAccessMode
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Storage requirement of this claim.
	Storage() cdk8s.Size
	// Storage class requirment of this claim.
	StorageClassName() *string
	// PV this claim is bound to.
	//
	// Undefined means the claim is not bound
	// to any specific volume.
	Volume() IPersistentVolume
	// Volume mode requirement of this claim.
	VolumeMode() PersistentVolumeMode
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Bind a claim to a specific volume.
	//
	// Note that you must also bind the volume to the claim.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#binding
	//
	Bind(vol IPersistentVolume)
	// Returns a string representation of this construct.
	ToString() *string
}

A PersistentVolumeClaim (PVC) is a request for storage by a user.

It is similar to a Pod. Pods consume node resources and PVCs consume PV resources. Pods can request specific levels of resources (CPU and Memory). Claims can request specific size and access modes.

func NewPersistentVolumeClaim ΒΆ

func NewPersistentVolumeClaim(scope constructs.Construct, id *string, props *PersistentVolumeClaimProps) PersistentVolumeClaim

type PersistentVolumeClaimProps ΒΆ

type PersistentVolumeClaimProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Contains the access modes the volume should support.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
	//
	AccessModes *[]PersistentVolumeAccessMode `field:"optional" json:"accessModes" yaml:"accessModes"`
	// Minimum storage size the volume should have.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
	//
	Storage cdk8s.Size `field:"optional" json:"storage" yaml:"storage"`
	// Name of the StorageClass required by the claim. When this property is not set, the behavior is as follows:.
	//
	// - If the admission plugin is turned on, the storage class marked as default will be used.
	// - If the admission plugin is turned off, the pvc can only be bound to volumes without a storage class.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
	//
	StorageClassName *string `field:"optional" json:"storageClassName" yaml:"storageClassName"`
	// The PersistentVolume backing this claim.
	//
	// The control plane still checks that storage class, access modes,
	// and requested storage size on the volume are valid.
	//
	// Note that in order to guarantee a proper binding, the volume should
	// also define a `claimRef` referring to this claim. Otherwise, the volume may be
	// claimed be other pvc's before it gets a chance to bind to this one.
	//
	// If the volume is managed (i.e not imported), you can use `pv.claim()` to easily
	// create a bi-directional bounded claim.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#binding.
	//
	Volume IPersistentVolume `field:"optional" json:"volume" yaml:"volume"`
	// Defines what type of volume is required by the claim.
	VolumeMode PersistentVolumeMode `field:"optional" json:"volumeMode" yaml:"volumeMode"`
}

Properties for `PersistentVolumeClaim`.

type PersistentVolumeClaimVolumeOptions ΒΆ

type PersistentVolumeClaimVolumeOptions struct {
	// The volume name.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// Will force the ReadOnly setting in VolumeMounts.
	ReadOnly *bool `field:"optional" json:"readOnly" yaml:"readOnly"`
}

Options for a PersistentVolumeClaim-based volume.

type PersistentVolumeMode ΒΆ

type PersistentVolumeMode string

Volume Modes.

const (
	// Volume is ounted into Pods into a directory.
	//
	// If the volume is backed by a block device and the device is empty,
	// Kubernetes creates a filesystem on the device before mounting it
	// for the first time.
	PersistentVolumeMode_FILE_SYSTEM PersistentVolumeMode = "FILE_SYSTEM"
	// Use a volume as a raw block device.
	//
	// Such volume is presented into a Pod as a block device,
	// without any filesystem on it. This mode is useful to provide a Pod the fastest possible way
	// to access a volume, without any filesystem layer between the Pod
	// and the volume. On the other hand, the application running in
	// the Pod must know how to handle a raw block device.
	PersistentVolumeMode_BLOCK PersistentVolumeMode = "BLOCK"
)

type PersistentVolumeProps ΒΆ

type PersistentVolumeProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Contains all ways the volume can be mounted.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes
	//
	AccessModes *[]PersistentVolumeAccessMode `field:"optional" json:"accessModes" yaml:"accessModes"`
	// Part of a bi-directional binding between PersistentVolume and PersistentVolumeClaim.
	//
	// Expected to be non-nil when bound.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#binding
	//
	Claim IPersistentVolumeClaim `field:"optional" json:"claim" yaml:"claim"`
	// A list of mount options, e.g. ["ro", "soft"]. Not validated - mount will simply fail if one is invalid.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options
	//
	MountOptions *[]*string `field:"optional" json:"mountOptions" yaml:"mountOptions"`
	// When a user is done with their volume, they can delete the PVC objects from the API that allows reclamation of the resource.
	//
	// The reclaim policy tells the cluster what to do with
	// the volume after it has been released of its claim.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#reclaiming
	//
	ReclaimPolicy PersistentVolumeReclaimPolicy `field:"optional" json:"reclaimPolicy" yaml:"reclaimPolicy"`
	// What is the storage capacity of this volume.
	// See: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
	//
	Storage cdk8s.Size `field:"optional" json:"storage" yaml:"storage"`
	// Name of StorageClass to which this persistent volume belongs.
	StorageClassName *string `field:"optional" json:"storageClassName" yaml:"storageClassName"`
	// Defines what type of volume is required by the claim.
	VolumeMode PersistentVolumeMode `field:"optional" json:"volumeMode" yaml:"volumeMode"`
}

Properties for `PersistentVolume`.

type PersistentVolumeReclaimPolicy ΒΆ

type PersistentVolumeReclaimPolicy string

Reclaim Policies.

const (
	// The Retain reclaim policy allows for manual reclamation of the resource.
	//
	// When the PersistentVolumeClaim is deleted, the PersistentVolume still exists and the
	// volume is considered "released". But it is not yet available for another claim
	// because the previous claimant's data remains on the volume.
	// An administrator can manually reclaim the volume with the following steps:
	//
	// 1. Delete the PersistentVolume. The associated storage asset in external
	//     infrastructure (such as an AWS EBS, GCE PD, Azure Disk, or Cinder volume) still exists after the PV is deleted.
	// 2. Manually clean up the data on the associated storage asset accordingly.
	// 3. Manually delete the associated storage asset.
	//
	// If you want to reuse the same storage asset, create a new PersistentVolume
	// with the same storage asset definition.
	PersistentVolumeReclaimPolicy_RETAIN PersistentVolumeReclaimPolicy = "RETAIN"
	// For volume plugins that support the Delete reclaim policy, deletion removes both the PersistentVolume object from Kubernetes, as well as the associated storage asset in the external infrastructure, such as an AWS EBS, GCE PD, Azure Disk, or Cinder volume.
	//
	// Volumes that were dynamically provisioned inherit the reclaim policy of their StorageClass, which defaults to Delete.
	// The administrator should configure the StorageClass according to users' expectations; otherwise,
	// the PV must be edited or patched after it is created.
	PersistentVolumeReclaimPolicy_DELETE PersistentVolumeReclaimPolicy = "DELETE"
)

type Pod ΒΆ

type Pod interface {
	AbstractPod
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	Connections() PodConnections
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	Scheduling() PodScheduling
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

Pod is a collection of containers that can run on a host.

This resource is created by clients and scheduled onto hosts.

func NewPod ΒΆ

func NewPod(scope constructs.Construct, id *string, props *PodProps) Pod

type PodConnections ΒΆ

type PodConnections interface {
	Instance() AbstractPod
	// Allow network traffic from the peer to this pod.
	//
	// By default, this will create an ingress network policy for this pod, and an egress
	// network policy for the peer. This is required if both sides are already isolated.
	// Use `options.isolation` to control this behavior.
	//
	// Example:
	//   // create only an egress policy that selects the 'web' pod to allow outgoing traffic
	//   // to the 'redis' pod. this requires the 'redis' pod to not be isolated for ingress.
	//   redis.connections.allowFrom(web, { isolation: Isolation.PEER })
	//
	//   // create only an ingress policy that selects the 'redis' peer to allow incoming traffic
	//   // from the 'web' pod. this requires the 'web' pod to not be isolated for egress.
	//   redis.connections.allowFrom(web, { isolation: Isolation.POD })
	//
	AllowFrom(peer INetworkPolicyPeer, options *PodConnectionsAllowFromOptions)
	// Allow network traffic from this pod to the peer.
	//
	// By default, this will create an egress network policy for this pod, and an ingress
	// network policy for the peer. This is required if both sides are already isolated.
	// Use `options.isolation` to control this behavior.
	//
	// Example:
	//   // create only an egress policy that selects the 'web' pod to allow outgoing traffic
	//   // to the 'redis' pod. this requires the 'redis' pod to not be isolated for ingress.
	//   web.connections.allowTo(redis, { isolation: Isolation.POD })
	//
	//   // create only an ingress policy that selects the 'redis' peer to allow incoming traffic
	//   // from the 'web' pod. this requires the 'web' pod to not be isolated for egress.
	//   web.connections.allowTo(redis, { isolation: Isolation.PEER })
	//
	AllowTo(peer INetworkPolicyPeer, options *PodConnectionsAllowToOptions)
}

Controls network isolation rules for inter-pod communication.

func NewPodConnections ΒΆ

func NewPodConnections(instance AbstractPod) PodConnections

type PodConnectionsAllowFromOptions ΒΆ

type PodConnectionsAllowFromOptions struct {
	// Which isolation should be applied to establish the connection.
	Isolation PodConnectionsIsolation `field:"optional" json:"isolation" yaml:"isolation"`
	// Ports to allow incoming traffic to.
	Ports *[]NetworkPolicyPort `field:"optional" json:"ports" yaml:"ports"`
}

Options for `PodConnections.allowFrom`.

type PodConnectionsAllowToOptions ΒΆ

type PodConnectionsAllowToOptions struct {
	// Which isolation should be applied to establish the connection.
	Isolation PodConnectionsIsolation `field:"optional" json:"isolation" yaml:"isolation"`
	// Ports to allow outgoing traffic to.
	Ports *[]NetworkPolicyPort `field:"optional" json:"ports" yaml:"ports"`
}

Options for `PodConnections.allowTo`.

type PodConnectionsIsolation ΒΆ

type PodConnectionsIsolation string

Isolation determines which policies are created when allowing connections from a a pod / workload to peers.

const (
	// Only creates network policies that select the pod.
	PodConnectionsIsolation_POD PodConnectionsIsolation = "POD"
	// Only creates network policies that select the peer.
	PodConnectionsIsolation_PEER PodConnectionsIsolation = "PEER"
)

type PodDns ΒΆ

type PodDns interface {
	// The configured hostname of the pod.
	//
	// Undefined means its set to a system-defined value.
	Hostname() *string
	// Whether or not the pods hostname is set to its FQDN.
	HostnameAsFQDN() *bool
	// Nameservers defined for this pod.
	Nameservers() *[]*string
	// Custom dns options defined for this pod.
	Options() *[]*DnsOption
	// The DNS policy of this pod.
	Policy() DnsPolicy
	// Search domains defined for this pod.
	Searches() *[]*string
	// The configured subdomain of the pod.
	Subdomain() *string
	// Add a nameserver.
	AddNameserver(nameservers ...*string)
	// Add a custom option.
	AddOption(options ...*DnsOption)
	// Add a search domain.
	AddSearch(searches ...*string)
}

Holds dns settings of the pod.

func NewPodDns ΒΆ

func NewPodDns(props *PodDnsProps) PodDns

type PodDnsProps ΒΆ

type PodDnsProps struct {
	// Specifies the hostname of the Pod.
	Hostname *string `field:"optional" json:"hostname" yaml:"hostname"`
	// If true the pod's hostname will be configured as the pod's FQDN, rather than the leaf name (the default).
	//
	// In Linux containers, this means setting the FQDN in the hostname field of the kernel (the nodename field of struct utsname).
	// In Windows containers, this means setting the registry value of hostname for the registry
	// key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters to FQDN.
	// If a pod does not have FQDN, this has no effect.
	HostnameAsFQDN *bool `field:"optional" json:"hostnameAsFQDN" yaml:"hostnameAsFQDN"`
	// A list of IP addresses that will be used as DNS servers for the Pod.
	//
	// There can be at most 3 IP addresses specified.
	// When the policy is set to "NONE", the list must contain at least one IP address,
	// otherwise this property is optional.
	// The servers listed will be combined to the base nameservers generated from
	// the specified DNS policy with duplicate addresses removed.
	Nameservers *[]*string `field:"optional" json:"nameservers" yaml:"nameservers"`
	// List of objects where each object may have a name property (required) and a value property (optional).
	//
	// The contents in this property
	// will be merged to the options generated from the specified DNS policy.
	// Duplicate entries are removed.
	Options *[]*DnsOption `field:"optional" json:"options" yaml:"options"`
	// Set DNS policy for the pod.
	//
	// If policy is set to `None`, other configuration must be supplied.
	Policy DnsPolicy `field:"optional" json:"policy" yaml:"policy"`
	// A list of DNS search domains for hostname lookup in the Pod.
	//
	// When specified, the provided list will be merged into the base
	// search domain names generated from the chosen DNS policy.
	// Duplicate domain names are removed.
	//
	// Kubernetes allows for at most 6 search domains.
	Searches *[]*string `field:"optional" json:"searches" yaml:"searches"`
	// If specified, the fully qualified Pod hostname will be "<hostname>.<subdomain>.<pod namespace>.svc.<cluster domain>".
	Subdomain *string `field:"optional" json:"subdomain" yaml:"subdomain"`
}

Properties for `PodDns`.

type PodManagementPolicy ΒΆ

type PodManagementPolicy string

Controls how pods are created during initial scale up, when replacing pods on nodes, or when scaling down.

The default policy is `OrderedReady`, where pods are created in increasing order (pod-0, then pod-1, etc) and the controller will wait until each pod is ready before continuing. When scaling down, the pods are removed in the opposite order.

The alternative policy is `Parallel` which will create pods in parallel to match the desired scale without waiting, and on scale down will delete all pods at once.

const (
	PodManagementPolicy_ORDERED_READY PodManagementPolicy = "ORDERED_READY"
	PodManagementPolicy_PARALLEL      PodManagementPolicy = "PARALLEL"
)

type PodProps ΒΆ

type PodProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
}

Properties for `Pod`.

type PodScheduling ΒΆ

type PodScheduling interface {
	Instance() AbstractPod
	// Assign this pod a specific node by name.
	//
	// The scheduler ignores the Pod, and the kubelet on the named node
	// tries to place the Pod on that node. Overrules any affinity rules of the pod.
	//
	// Some limitations of static assignment are:
	//
	// - If the named node does not exist, the Pod will not run, and in some
	//    cases may be automatically deleted.
	// - If the named node does not have the resources to accommodate the Pod,
	//    the Pod will fail and its reason will indicate why, for example OutOfmemory or OutOfcpu.
	// - Node names in cloud environments are not always predictable or stable.
	//
	// Will throw is the pod is already assigned to named node.
	//
	// Under the hood, this method utilizes the `nodeName` property.
	Assign(node NamedNode)
	// Attract this pod to a node matched by selectors. You can select a node by using `Node.labeled()`.
	//
	// Attracting to multiple nodes (i.e invoking this method multiple times) acts as
	// an OR condition, meaning the pod will be assigned to either one of the nodes.
	//
	// Under the hood, this method utilizes the `nodeAffinity` property.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
	//
	Attract(node LabeledNode, options *PodSchedulingAttractOptions)
	// Co-locate this pod with a scheduling selection.
	//
	// A selection can be one of:
	//
	// - An instance of a `Pod`.
	// - An instance of a `Workload` (e.g `Deployment`, `StatefulSet`).
	// - An un-managed pod that can be selected via `Pods.select()`.
	//
	// Co-locating with multiple selections ((i.e invoking this method multiple times)) acts as
	// an AND condition. meaning the pod will be assigned to a node that satisfies all
	// selections (i.e runs at least one pod that satisifies each selection).
	//
	// Under the hood, this method utilizes the `podAffinity` property.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
	//
	Colocate(selector IPodSelector, options *PodSchedulingColocateOptions)
	// Seperate this pod from a scheduling selection.
	//
	// A selection can be one of:
	//
	// - An instance of a `Pod`.
	// - An instance of a `Workload` (e.g `Deployment`, `StatefulSet`).
	// - An un-managed pod that can be selected via `Pods.select()`.
	//
	// Seperating from multiple selections acts as an AND condition. meaning the pod
	// will not be assigned to a node that satisfies all selections (i.e runs at least one pod that satisifies each selection).
	//
	// Under the hood, this method utilizes the `podAntiAffinity` property.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
	//
	Separate(selector IPodSelector, options *PodSchedulingSeparateOptions)
	// Allow this pod to tolerate taints matching these tolerations.
	//
	// You can put multiple taints on the same node and multiple tolerations on the same pod.
	// The way Kubernetes processes multiple taints and tolerations is like a filter: start with
	// all of a node's taints, then ignore the ones for which the pod has a matching toleration;
	// the remaining un-ignored taints have the indicated effects on the pod. In particular:
	//
	// - if there is at least one un-ignored taint with effect NoSchedule then Kubernetes will
	//    not schedule the pod onto that node
	// - if there is no un-ignored taint with effect NoSchedule but there is at least one un-ignored
	//    taint with effect PreferNoSchedule then Kubernetes will try to not schedule the pod onto the node
	// - if there is at least one un-ignored taint with effect NoExecute then the pod will be evicted from
	//    the node (if it is already running on the node), and will not be scheduled onto the node (if it is
	//    not yet running on the node).
	//
	// Under the hood, this method utilizes the `tolerations` property.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
	//
	Tolerate(node TaintedNode)
}

Controls the pod scheduling strategy.

func NewPodScheduling ΒΆ

func NewPodScheduling(instance AbstractPod) PodScheduling

type PodSchedulingAttractOptions ΒΆ

type PodSchedulingAttractOptions struct {
	// Indicates the attraction is optional (soft), with this weight score.
	Weight *float64 `field:"optional" json:"weight" yaml:"weight"`
}

Options for `PodScheduling.attract`.

type PodSchedulingColocateOptions ΒΆ

type PodSchedulingColocateOptions struct {
	// Which topology to coloate on.
	Topology Topology `field:"optional" json:"topology" yaml:"topology"`
	// Indicates the co-location is optional (soft), with this weight score.
	Weight *float64 `field:"optional" json:"weight" yaml:"weight"`
}

Options for `PodScheduling.colocate`.

type PodSchedulingSeparateOptions ΒΆ

type PodSchedulingSeparateOptions struct {
	// Which topology to separate on.
	Topology Topology `field:"optional" json:"topology" yaml:"topology"`
	// Indicates the separation is optional (soft), with this weight score.
	Weight *float64 `field:"optional" json:"weight" yaml:"weight"`
}

Options for `PodScheduling.separate`.

type PodSecurityContext ΒΆ

type PodSecurityContext interface {
	EnsureNonRoot() *bool
	FsGroup() *float64
	FsGroupChangePolicy() FsGroupChangePolicy
	Group() *float64
	Sysctls() *[]*Sysctl
	User() *float64
}

Holds pod-level security attributes and common container settings.

func NewPodSecurityContext ΒΆ

func NewPodSecurityContext(props *PodSecurityContextProps) PodSecurityContext

type PodSecurityContextProps ΒΆ

type PodSecurityContextProps struct {
	// Indicates that the container must run as a non-root user.
	//
	// If true, the Kubelet will validate the image at runtime to ensure that it does
	// not run as UID 0 (root) and fail to start the container if it does.
	EnsureNonRoot *bool `field:"optional" json:"ensureNonRoot" yaml:"ensureNonRoot"`
	// Modify the ownership and permissions of pod volumes to this GID.
	FsGroup *float64 `field:"optional" json:"fsGroup" yaml:"fsGroup"`
	// Defines behavior of changing ownership and permission of the volume before being exposed inside Pod.
	//
	// This field will only apply to volume types which support fsGroup based ownership(and permissions).
	// It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir.
	FsGroupChangePolicy FsGroupChangePolicy `field:"optional" json:"fsGroupChangePolicy" yaml:"fsGroupChangePolicy"`
	// The GID to run the entrypoint of the container process.
	Group *float64 `field:"optional" json:"group" yaml:"group"`
	// Sysctls hold a list of namespaced sysctls used for the pod.
	//
	// Pods with unsupported sysctls (by the container runtime) might fail to launch.
	Sysctls *[]*Sysctl `field:"optional" json:"sysctls" yaml:"sysctls"`
	// The UID to run the entrypoint of the container process.
	User *float64 `field:"optional" json:"user" yaml:"user"`
}

Properties for `PodSecurityContext`.

type PodSelectorConfig ΒΆ

type PodSelectorConfig struct {
	// A selector to select pods by labels.
	LabelSelector LabelSelector `field:"required" json:"labelSelector" yaml:"labelSelector"`
	// Configuration for selecting which namepsaces are the pods allowed to be in.
	Namespaces *NamespaceSelectorConfig `field:"optional" json:"namespaces" yaml:"namespaces"`
}

Configuration for selecting pods, optionally in particular namespaces.

type Pods ΒΆ

type Pods interface {
	constructs.Construct
	IPodSelector
	// The tree node.
	Node() constructs.Node
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
}

Represents a group of pods.

func NewPods ΒΆ

func NewPods(scope constructs.Construct, id *string, expressions *[]LabelExpression, labels *map[string]*string, namespaces INamespaceSelector) Pods

func Pods_All ΒΆ

func Pods_All(scope constructs.Construct, id *string, options *PodsAllOptions) Pods

Select all pods.

func Pods_Select ΒΆ

func Pods_Select(scope constructs.Construct, id *string, options *PodsSelectOptions) Pods

Select pods in the cluster with various selectors.

type PodsAllOptions ΒΆ

type PodsAllOptions struct {
	// Namespaces the pods are allowed to be in.
	//
	// Use `Namespaces.all()` to allow all namespaces.
	Namespaces Namespaces `field:"optional" json:"namespaces" yaml:"namespaces"`
}

Options for `Pods.all`.

type PodsSelectOptions ΒΆ

type PodsSelectOptions struct {
	// Expressions the pods must satisify.
	Expressions *[]LabelExpression `field:"optional" json:"expressions" yaml:"expressions"`
	// Labels the pods must have.
	Labels *map[string]*string `field:"optional" json:"labels" yaml:"labels"`
	// Namespaces the pods are allowed to be in.
	//
	// Use `Namespaces.all()` to allow all namespaces.
	Namespaces Namespaces `field:"optional" json:"namespaces" yaml:"namespaces"`
}

Options for `Pods.select`.

type Probe ΒΆ

type Probe interface {
}

Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.

func Probe_FromCommand ΒΆ

func Probe_FromCommand(command *[]*string, options *CommandProbeOptions) Probe

Defines a probe based on a command which is executed within the container.

func Probe_FromHttpGet ΒΆ

func Probe_FromHttpGet(path *string, options *HttpGetProbeOptions) Probe

Defines a probe based on an HTTP GET request to the IP address of the container.

func Probe_FromTcpSocket ΒΆ

func Probe_FromTcpSocket(options *TcpSocketProbeOptions) Probe

Defines a probe based opening a connection to a TCP socket on the container.

type ProbeOptions ΒΆ

type ProbeOptions struct {
	// Minimum consecutive failures for the probe to be considered failed after having succeeded.
	//
	// Defaults to 3. Minimum value is 1.
	FailureThreshold *float64 `field:"optional" json:"failureThreshold" yaml:"failureThreshold"`
	// Number of seconds after the container has started before liveness probes are initiated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
	//
	InitialDelaySeconds cdk8s.Duration `field:"optional" json:"initialDelaySeconds" yaml:"initialDelaySeconds"`
	// How often (in seconds) to perform the probe.
	//
	// Default to 10 seconds. Minimum value is 1.
	PeriodSeconds cdk8s.Duration `field:"optional" json:"periodSeconds" yaml:"periodSeconds"`
	// Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1.
	//
	// Must be 1 for liveness and startup. Minimum value is 1.
	SuccessThreshold *float64 `field:"optional" json:"successThreshold" yaml:"successThreshold"`
	// Number of seconds after which the probe times out.
	//
	// Defaults to 1 second. Minimum value is 1.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
	//
	TimeoutSeconds cdk8s.Duration `field:"optional" json:"timeoutSeconds" yaml:"timeoutSeconds"`
}

Probe options.

type Protocol ΒΆ

type Protocol string

Network protocols.

const (
	// TCP.
	Protocol_TCP Protocol = "TCP"
	// UDP.
	Protocol_UDP Protocol = "UDP"
	// SCTP.
	Protocol_SCTP Protocol = "SCTP"
)

type Resource ΒΆ

type Resource interface {
	constructs.Construct
	IApiEndpoint
	IApiResource
	IResource
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
}

Base class for all Kubernetes objects in stdk8s.

Represents a single resource.

type ResourceFieldPaths ΒΆ

type ResourceFieldPaths string
const (
	// CPU limit of the container.
	ResourceFieldPaths_CPU_LIMIT ResourceFieldPaths = "CPU_LIMIT"
	// Memory limit of the container.
	ResourceFieldPaths_MEMORY_LIMIT ResourceFieldPaths = "MEMORY_LIMIT"
	// CPU request of the container.
	ResourceFieldPaths_CPU_REQUEST ResourceFieldPaths = "CPU_REQUEST"
	// Memory request of the container.
	ResourceFieldPaths_MEMORY_REQUEST ResourceFieldPaths = "MEMORY_REQUEST"
	// Ephemeral storage limit of the container.
	ResourceFieldPaths_STORAGE_LIMIT ResourceFieldPaths = "STORAGE_LIMIT"
	// Ephemeral storage request of the container.
	ResourceFieldPaths_STORAGE_REQUEST ResourceFieldPaths = "STORAGE_REQUEST"
)

type ResourcePermissions ΒΆ

type ResourcePermissions interface {
	Instance() Resource
	// Grants the list of subjects permissions to read this resource.
	GrantRead(subjects ...ISubject) RoleBinding
	// Grants the list of subjects permissions to read and write this resource.
	GrantReadWrite(subjects ...ISubject) RoleBinding
}

Controls permissions for operations on resources.

func NewResourcePermissions ΒΆ

func NewResourcePermissions(instance Resource) ResourcePermissions

type ResourceProps ΒΆ

type ResourceProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
}

Initialization properties for resources.

type RestartPolicy ΒΆ

type RestartPolicy string

Restart policy for all containers within the pod.

const (
	// Always restart the pod after it exits.
	RestartPolicy_ALWAYS RestartPolicy = "ALWAYS"
	// Only restart if the pod exits with a non-zero exit code.
	RestartPolicy_ON_FAILURE RestartPolicy = "ON_FAILURE"
	// Never restart the pod.
	RestartPolicy_NEVER RestartPolicy = "NEVER"
)

type Role ΒΆ

type Role interface {
	Resource
	IRole
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Rules associaated with this Role.
	//
	// Returns a copy, use `allow` to add rules.
	Rules() *[]*RolePolicyRule
	// Add permission to perform a list of HTTP verbs on a collection of resources.
	// See: https://kubernetes.io/docs/reference/access-authn-authz/authorization/#determine-the-request-verb
	//
	Allow(verbs *[]*string, resources ...IApiResource)
	// Add "create" permission for the resources.
	AllowCreate(resources ...IApiResource)
	// Add "delete" permission for the resources.
	AllowDelete(resources ...IApiResource)
	// Add "deletecollection" permission for the resources.
	AllowDeleteCollection(resources ...IApiResource)
	// Add "get" permission for the resources.
	AllowGet(resources ...IApiResource)
	// Add "list" permission for the resources.
	AllowList(resources ...IApiResource)
	// Add "patch" permission for the resources.
	AllowPatch(resources ...IApiResource)
	// Add "get", "list", and "watch" permissions for the resources.
	AllowRead(resources ...IApiResource)
	// Add "get", "list", "watch", "create", "update", "patch", "delete", and "deletecollection" permissions for the resources.
	AllowReadWrite(resources ...IApiResource)
	// Add "update" permission for the resources.
	AllowUpdate(resources ...IApiResource)
	// Add "watch" permission for the resources.
	AllowWatch(resources ...IApiResource)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Create a RoleBinding that binds the permissions in this Role to a list of subjects, that will only apply this role's namespace.
	Bind(subjects ...ISubject) RoleBinding
	// Returns a string representation of this construct.
	ToString() *string
}

Role is a namespaced, logical grouping of PolicyRules that can be referenced as a unit by a RoleBinding.

func NewRole ΒΆ

func NewRole(scope constructs.Construct, id *string, props *RoleProps) Role

type RoleBinding ΒΆ

type RoleBinding interface {
	Resource
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	Role() IRole
	Subjects() *[]ISubject
	// Adds a subject to the role.
	AddSubjects(subjects ...ISubject)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
}

A RoleBinding grants permissions within a specific namespace to a user or set of users.

func NewRoleBinding ΒΆ

func NewRoleBinding(scope constructs.Construct, id *string, props *RoleBindingProps) RoleBinding

type RoleBindingProps ΒΆ

type RoleBindingProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// The role to bind to.
	//
	// A RoleBinding can reference a Role or a ClusterRole.
	Role IRole `field:"required" json:"role" yaml:"role"`
}

Properties for `RoleBinding`.

type RolePolicyRule ΒΆ

type RolePolicyRule struct {
	// Resources this rule applies to.
	Resources *[]IApiResource `field:"required" json:"resources" yaml:"resources"`
	// Verbs to allow.
	//
	// (e.g ['get', 'watch'])
	Verbs *[]*string `field:"required" json:"verbs" yaml:"verbs"`
}

Policy rule of a `Role.

type RoleProps ΒΆ

type RoleProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// A list of rules the role should allow.
	Rules *[]*RolePolicyRule `field:"optional" json:"rules" yaml:"rules"`
}

Properties for `Role`.

type Secret ΒΆ

type Secret interface {
	Resource
	ISecret
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Whether or not the secret is immutable.
	Immutable() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Adds a string data field to the secert.
	AddStringData(key *string, value *string)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Gets a string data by key or undefined.
	GetStringData(key *string) *string
	// Returns a string representation of this construct.
	ToString() *string
}

Kubernetes Secrets let you store and manage sensitive information, such as passwords, OAuth tokens, and ssh keys.

Storing confidential information in a Secret is safer and more flexible than putting it verbatim in a Pod definition or in a container image. See: https://kubernetes.io/docs/concepts/configuration/secret

func NewSecret ΒΆ

func NewSecret(scope constructs.Construct, id *string, props *SecretProps) Secret

type SecretProps ΒΆ

type SecretProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// If set to true, ensures that data stored in the Secret cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
	// stringData allows specifying non-binary secret data in string form.
	//
	// It is
	// provided as a write-only convenience method. All keys and values are merged
	// into the data field on write, overwriting any existing values. It is never
	// output when reading from the API.
	StringData *map[string]*string `field:"optional" json:"stringData" yaml:"stringData"`
	// Optional type associated with the secret.
	//
	// Used to facilitate programmatic
	// handling of secret data by various controllers.
	Type *string `field:"optional" json:"type" yaml:"type"`
}

Options for `Secret`.

type SecretValue ΒΆ

type SecretValue struct {
	// The JSON key.
	Key *string `field:"required" json:"key" yaml:"key"`
	// The secret.
	Secret ISecret `field:"required" json:"secret" yaml:"secret"`
}

Represents a specific value in JSON secret.

type SecretVolumeOptions ΒΆ

type SecretVolumeOptions struct {
	// Mode bits to use on created files by default.
	//
	// Must be a value between 0 and
	// 0777. Defaults to 0644. Directories within the path are not affected by
	// this setting. This might be in conflict with other options that affect the
	// file mode, like fsGroup, and the result can be other mode bits set.
	DefaultMode *float64 `field:"optional" json:"defaultMode" yaml:"defaultMode"`
	// If unspecified, each key-value pair in the Data field of the referenced secret will be projected into the volume as a file whose name is the key and content is the value.
	//
	// If specified, the listed keys will be projected
	// into the specified paths, and unlisted keys will not be present. If a key
	// is specified which is not present in the secret, the volume setup will
	// error unless it is marked optional. Paths must be relative and may not
	// contain the '..' path or start with '..'.
	Items *map[string]*PathMapping `field:"optional" json:"items" yaml:"items"`
	// The volume name.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// Specify whether the secret or its keys must be defined.
	Optional *bool `field:"optional" json:"optional" yaml:"optional"`
}

Options for the Secret-based volume.

type Service ΒΆ

type Service interface {
	Resource
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// The IP address of the service and is usually assigned randomly by the master.
	ClusterIP() *string
	// The externalName to be used for EXTERNAL_NAME types.
	ExternalName() *string
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// Ports for this service.
	//
	// Use `bind()` to bind additional service ports.
	Ports() *[]*ServicePort
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Determines how the Service is exposed.
	Type() ServiceType
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Configure a port the service will bind to.
	//
	// This method can be called multiple times.
	Bind(port *float64, options *ServiceBindOptions)
	// Expose a service via an ingress using the specified path.
	//
	// Returns: The `Ingress` resource that was used.
	ExposeViaIngress(path *string, options *ExposeServiceViaIngressOptions) Ingress
	// Require this service to select pods matching the selector.
	//
	// Note that invoking this method multiple times acts as an AND operator
	// on the resulting labels.
	Select(selector IPodSelector)
	// Require this service to select pods with this label.
	//
	// Note that invoking this method multiple times acts as an AND operator
	// on the resulting labels.
	SelectLabel(key *string, value *string)
	// Returns a string representation of this construct.
	ToString() *string
}

An abstract way to expose an application running on a set of Pods as a network service.

With Kubernetes you don't need to modify your application to use an unfamiliar service discovery mechanism. Kubernetes gives Pods their own IP addresses and a single DNS name for a set of Pods, and can load-balance across them.

For example, consider a stateless image-processing backend which is running with 3 replicas. Those replicas are fungibleβ€”frontends do not care which backend they use. While the actual Pods that compose the backend set may change, the frontend clients should not need to be aware of that, nor should they need to keep track of the set of backends themselves. The Service abstraction enables this decoupling.

If you're able to use Kubernetes APIs for service discovery in your application, you can query the API server for Endpoints, that get updated whenever the set of Pods in a Service changes. For non-native applications, Kubernetes offers ways to place a network port or load balancer in between your application and the backend Pods.

func NewService ΒΆ

func NewService(scope constructs.Construct, id *string, props *ServiceProps) Service

type ServiceAccount ΒΆ

type ServiceAccount interface {
	Resource
	IServiceAccount
	ISubject
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Whether or not a token is automatically mounted for this service account.
	AutomountToken() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// List of secrets allowed to be used by pods running using this service account.
	//
	// Returns a copy. To add a secret, use `addSecret()`.
	Secrets() *[]ISecret
	// Allow a secret to be accessed by pods using this service account.
	AddSecret(secr ISecret)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

A service account provides an identity for processes that run in a Pod.

When you (a human) access the cluster (for example, using kubectl), you are authenticated by the apiserver as a particular User Account (currently this is usually admin, unless your cluster administrator has customized your cluster). Processes in containers inside pods can also contact the apiserver. When they do, they are authenticated as a particular Service Account (for example, default). See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account

func NewServiceAccount ΒΆ

func NewServiceAccount(scope constructs.Construct, id *string, props *ServiceAccountProps) ServiceAccount

type ServiceAccountProps ΒΆ

type ServiceAccountProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether pods running as this service account should have an API token automatically mounted.
	//
	// Can be overridden at the pod level.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountToken *bool `field:"optional" json:"automountToken" yaml:"automountToken"`
	// List of secrets allowed to be used by pods running using this ServiceAccount.
	// See: https://kubernetes.io/docs/concepts/configuration/secret
	//
	Secrets *[]ISecret `field:"optional" json:"secrets" yaml:"secrets"`
}

Properties for initialization of `ServiceAccount`.

type ServiceAccountTokenSecret ΒΆ

type ServiceAccountTokenSecret interface {
	Secret
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Whether or not the secret is immutable.
	Immutable() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Adds a string data field to the secert.
	AddStringData(key *string, value *string)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Gets a string data by key or undefined.
	GetStringData(key *string) *string
	// Returns a string representation of this construct.
	ToString() *string
}

Create a secret for a service account token. See: https://kubernetes.io/docs/concepts/configuration/secret/#service-account-token-secrets

func NewServiceAccountTokenSecret ΒΆ

func NewServiceAccountTokenSecret(scope constructs.Construct, id *string, props *ServiceAccountTokenSecretProps) ServiceAccountTokenSecret

type ServiceAccountTokenSecretProps ΒΆ

type ServiceAccountTokenSecretProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// If set to true, ensures that data stored in the Secret cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
	// The service account to store a secret for.
	ServiceAccount IServiceAccount `field:"required" json:"serviceAccount" yaml:"serviceAccount"`
}

Options for `ServiceAccountTokenSecret`.

type ServiceBindOptions ΒΆ

type ServiceBindOptions struct {
	// The name of this port within the service.
	//
	// This must be a DNS_LABEL. All
	// ports within a ServiceSpec must have unique names. This maps to the 'Name'
	// field in EndpointPort objects. Optional if only one ServicePort is defined
	// on this service.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The port on each node on which this service is exposed when type=NodePort or LoadBalancer.
	//
	// Usually assigned by the system. If specified, it will be
	// allocated to the service if unused or else creation of the service will
	// fail. Default is to auto-allocate a port if the ServiceType of this Service
	// requires one.
	// See: https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
	//
	NodePort *float64 `field:"optional" json:"nodePort" yaml:"nodePort"`
	// The IP protocol for this port.
	//
	// Supports "TCP", "UDP", and "SCTP". Default is TCP.
	Protocol Protocol `field:"optional" json:"protocol" yaml:"protocol"`
	// The port number the service will redirect to.
	TargetPort *float64 `field:"optional" json:"targetPort" yaml:"targetPort"`
}

Options for `Service.bind`.

type ServiceIngressBackendOptions ΒΆ

type ServiceIngressBackendOptions struct {
	// The port to use to access the service.
	//
	// - This option will fail if the service does not expose any ports.
	// - If the service exposes multiple ports, this option must be specified.
	// - If the service exposes a single port, this option is optional and if
	//    specified, it must be the same port exposed by the service.
	Port *float64 `field:"optional" json:"port" yaml:"port"`
}

Options for setting up backends for ingress rules.

type ServicePort ΒΆ

type ServicePort struct {
	// The name of this port within the service.
	//
	// This must be a DNS_LABEL. All
	// ports within a ServiceSpec must have unique names. This maps to the 'Name'
	// field in EndpointPort objects. Optional if only one ServicePort is defined
	// on this service.
	Name *string `field:"optional" json:"name" yaml:"name"`
	// The port on each node on which this service is exposed when type=NodePort or LoadBalancer.
	//
	// Usually assigned by the system. If specified, it will be
	// allocated to the service if unused or else creation of the service will
	// fail. Default is to auto-allocate a port if the ServiceType of this Service
	// requires one.
	// See: https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
	//
	NodePort *float64 `field:"optional" json:"nodePort" yaml:"nodePort"`
	// The IP protocol for this port.
	//
	// Supports "TCP", "UDP", and "SCTP". Default is TCP.
	Protocol Protocol `field:"optional" json:"protocol" yaml:"protocol"`
	// The port number the service will redirect to.
	TargetPort *float64 `field:"optional" json:"targetPort" yaml:"targetPort"`
	// The port number the service will bind to.
	Port *float64 `field:"required" json:"port" yaml:"port"`
}

Definition of a service port.

type ServiceProps ΒΆ

type ServiceProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// The IP address of the service and is usually assigned randomly by the master.
	//
	// If an address is specified manually and is not in use by others, it
	// will be allocated to the service; otherwise, creation of the service will
	// fail. This field can not be changed through updates. Valid values are
	// "None", empty string (""), or a valid IP address. "None" can be specified
	// for headless services when proxying is not required. Only applies to types
	// ClusterIP, NodePort, and LoadBalancer. Ignored if type is ExternalName.
	// See: https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
	//
	ClusterIP *string `field:"optional" json:"clusterIP" yaml:"clusterIP"`
	// A list of IP addresses for which nodes in the cluster will also accept traffic for this service.
	//
	// These IPs are not managed by Kubernetes. The user
	// is responsible for ensuring that traffic arrives at a node with this IP. A
	// common example is external load-balancers that are not part of the
	// Kubernetes system.
	ExternalIPs *[]*string `field:"optional" json:"externalIPs" yaml:"externalIPs"`
	// The externalName to be used when ServiceType.EXTERNAL_NAME is set.
	ExternalName *string `field:"optional" json:"externalName" yaml:"externalName"`
	// A list of CIDR IP addresses, if specified and supported by the platform, will restrict traffic through the cloud-provider load-balancer to the specified client IPs.
	//
	// More info: https://kubernetes.io/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/
	LoadBalancerSourceRanges *[]*string `field:"optional" json:"loadBalancerSourceRanges" yaml:"loadBalancerSourceRanges"`
	// The ports this service binds to.
	//
	// If the selector of the service is a managed pod / workload,
	// its ports will are automatically extracted and used as the default value.
	// Otherwise, no ports are bound.
	Ports *[]*ServicePort `field:"optional" json:"ports" yaml:"ports"`
	// Which pods should the service select and route to.
	//
	// You can pass one of the following:
	//
	// - An instance of `Pod` or any workload resource (e.g `Deployment`, `StatefulSet`, ...)
	// - Pods selected by the `Pods.select` function. Note that in this case only labels can be specified.
	//
	// Example:
	//   // select the pods of a specific deployment
	//   const backend = new kplus.Deployment(this, 'Backend', ...);
	//   new kplus.Service(this, 'Service', { selector: backend });
	//
	//   // select all pods labeled with the `tier=backend` label
	//   const backend = kplus.Pod.labeled({ tier: 'backend' });
	//   new kplus.Service(this, 'Service', { selector: backend });
	//
	Selector IPodSelector `field:"optional" json:"selector" yaml:"selector"`
	// Determines how the Service is exposed.
	//
	// More info: https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
	Type ServiceType `field:"optional" json:"type" yaml:"type"`
}

Properties for `Service`.

type ServiceType ΒΆ

type ServiceType string

For some parts of your application (for example, frontends) you may want to expose a Service onto an external IP address, that's outside of your cluster.

Kubernetes ServiceTypes allow you to specify what kind of Service you want. The default is ClusterIP.

const (
	// Exposes the Service on a cluster-internal IP.
	//
	// Choosing this value makes the Service only reachable from within the cluster.
	// This is the default ServiceType.
	ServiceType_CLUSTER_IP ServiceType = "CLUSTER_IP"
	// Exposes the Service on each Node's IP at a static port (the NodePort).
	//
	// A ClusterIP Service, to which the NodePort Service routes, is automatically created.
	// You'll be able to contact the NodePort Service, from outside the cluster,
	// by requesting <NodeIP>:<NodePort>.
	ServiceType_NODE_PORT ServiceType = "NODE_PORT"
	// Exposes the Service externally using a cloud provider's load balancer.
	//
	// NodePort and ClusterIP Services, to which the external load balancer routes,
	// are automatically created.
	ServiceType_LOAD_BALANCER ServiceType = "LOAD_BALANCER"
	// Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by returning a CNAME record with its value. No proxying of any kind is set up.
	//
	// > Note: You need either kube-dns version 1.7 or CoreDNS version 0.0.8 or higher to use the ExternalName type.
	ServiceType_EXTERNAL_NAME ServiceType = "EXTERNAL_NAME"
)

type SshAuthSecret ΒΆ

type SshAuthSecret interface {
	Secret
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	// Whether or not the secret is immutable.
	Immutable() *bool
	// The object kind (e.g. "Deployment").
	Kind() *string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	// Adds a string data field to the secert.
	AddStringData(key *string, value *string)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Gets a string data by key or undefined.
	GetStringData(key *string) *string
	// Returns a string representation of this construct.
	ToString() *string
}

Create a secret for ssh authentication. See: https://kubernetes.io/docs/concepts/configuration/secret/#ssh-authentication-secrets

func NewSshAuthSecret ΒΆ

func NewSshAuthSecret(scope constructs.Construct, id *string, props *SshAuthSecretProps) SshAuthSecret

type SshAuthSecretProps ΒΆ

type SshAuthSecretProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// If set to true, ensures that data stored in the Secret cannot be updated (only object metadata can be modified).
	//
	// If not set to true, the field can be modified at any time.
	Immutable *bool `field:"optional" json:"immutable" yaml:"immutable"`
	// The SSH private key to use.
	SshPrivateKey *string `field:"required" json:"sshPrivateKey" yaml:"sshPrivateKey"`
}

Options for `SshAuthSecret`.

type StatefulSet ΒΆ

type StatefulSet interface {
	Workload
	// The group portion of the API version (e.g. "authorization.k8s.io").
	ApiGroup() *string
	// The underlying cdk8s API object.
	// See: base.Resource.apiObject
	//
	ApiObject() cdk8s.ApiObject
	// The object's API version (e.g. "authorization.k8s.io/v1").
	ApiVersion() *string
	AutomountServiceAccountToken() *bool
	Connections() PodConnections
	Containers() *[]Container
	Dns() PodDns
	DockerRegistryAuth() DockerConfigSecret
	HostAliases() *[]*HostAlias
	InitContainers() *[]Container
	// The object kind (e.g. "Deployment").
	Kind() *string
	// The expression matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add expression matchers.
	MatchExpressions() *[]*LabelSelectorRequirement
	// The label matchers this workload will use in order to select pods.
	//
	// Returns a a copy. Use `select()` to add label matchers.
	MatchLabels() *map[string]*string
	Metadata() cdk8s.ApiObjectMetadataDefinition
	// Minimum duration for which a newly created pod should be ready without any of its container crashing, for it to be considered available.
	MinReady() cdk8s.Duration
	// The name of this API object.
	Name() *string
	// The tree node.
	Node() constructs.Node
	Permissions() ResourcePermissions
	// Management policy to use for the set.
	PodManagementPolicy() PodManagementPolicy
	// The metadata of pods in this workload.
	PodMetadata() cdk8s.ApiObjectMetadataDefinition
	// Number of desired pods.
	Replicas() *float64
	// The unique, namespace-global, name of an object inside the Kubernetes cluster.
	//
	// If this is omitted, the ApiResource should represent all objects of the given type.
	ResourceName() *string
	// The name of a resource type as it appears in the relevant API endpoint.
	ResourceType() *string
	RestartPolicy() RestartPolicy
	Scheduling() WorkloadScheduling
	SecurityContext() PodSecurityContext
	ServiceAccount() IServiceAccount
	// The update startegy of this stateful set.
	Strategy() StatefulSetUpdateStrategy
	Volumes() *[]Volume
	AddContainer(cont *ContainerProps) Container
	AddHostAlias(hostAlias *HostAlias)
	AddInitContainer(cont *ContainerProps) Container
	AddVolume(vol Volume)
	// Return the IApiResource this object represents.
	AsApiResource() IApiResource
	// Return the non resource url this object represents.
	AsNonApiResource() *string
	// Configure selectors for this workload.
	Select(selectors ...LabelSelector)
	// Return the configuration of this peer.
	// See: INetworkPolicyPeer.toNetworkPolicyPeerConfig()
	//
	ToNetworkPolicyPeerConfig() *NetworkPolicyPeerConfig
	// Convert the peer into a pod selector, if possible.
	// See: INetworkPolicyPeer.toPodSelector()
	//
	ToPodSelector() IPodSelector
	// Return the configuration of this selector.
	// See: IPodSelector.toPodSelectorConfig()
	//
	ToPodSelectorConfig() *PodSelectorConfig
	// Returns a string representation of this construct.
	ToString() *string
	// Return the subject configuration.
	// See: ISubect.toSubjectConfiguration()
	//
	ToSubjectConfiguration() *SubjectConfiguration
}

StatefulSet is the workload API object used to manage stateful applications.

Manages the deployment and scaling of a set of Pods, and provides guarantees about the ordering and uniqueness of these Pods.

Like a Deployment, a StatefulSet manages Pods that are based on an identical container spec. Unlike a Deployment, a StatefulSet maintains a sticky identity for each of their Pods. These pods are created from the same spec, but are not interchangeable: each has a persistent identifier that it maintains across any rescheduling.

If you want to use storage volumes to provide persistence for your workload, you can use a StatefulSet as part of the solution. Although individual Pods in a StatefulSet are susceptible to failure, the persistent Pod identifiers make it easier to match existing volumes to the new Pods that replace any that have failed.

Using StatefulSets ------------------ StatefulSets are valuable for applications that require one or more of the following.

- Stable, unique network identifiers. - Stable, persistent storage. - Ordered, graceful deployment and scaling. - Ordered, automated rolling updates.

func NewStatefulSet ΒΆ

func NewStatefulSet(scope constructs.Construct, id *string, props *StatefulSetProps) StatefulSet

type StatefulSetProps ΒΆ

type StatefulSetProps struct {
	// Metadata that all persisted resources must have, which includes all objects users must create.
	Metadata *cdk8s.ApiObjectMetadata `field:"optional" json:"metadata" yaml:"metadata"`
	// Indicates whether a service account token should be automatically mounted.
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
	//
	AutomountServiceAccountToken *bool `field:"optional" json:"automountServiceAccountToken" yaml:"automountServiceAccountToken"`
	// List of containers belonging to the pod.
	//
	// Containers cannot currently be
	// added or removed. There must be at least one container in a Pod.
	//
	// You can add additionnal containers using `podSpec.addContainer()`
	Containers *[]*ContainerProps `field:"optional" json:"containers" yaml:"containers"`
	// DNS settings for the pod.
	// See: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
	//
	Dns *PodDnsProps `field:"optional" json:"dns" yaml:"dns"`
	// A secret containing docker credentials for authenticating to a registry.
	DockerRegistryAuth DockerConfigSecret `field:"optional" json:"dockerRegistryAuth" yaml:"dockerRegistryAuth"`
	// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the pod's hosts file.
	HostAliases *[]*HostAlias `field:"optional" json:"hostAliases" yaml:"hostAliases"`
	// List of initialization containers belonging to the pod.
	//
	// Init containers are executed in order prior to containers being started.
	// If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy.
	// The name for an init container or normal container must be unique among all containers.
	// Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes.
	// The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit
	// for each resource type, and then using the max of of that value or the sum of the normal containers.
	// Limits are applied to init containers in a similar fashion.
	//
	// Init containers cannot currently be added ,removed or updated.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
	//
	InitContainers *[]*ContainerProps `field:"optional" json:"initContainers" yaml:"initContainers"`
	// Restart policy for all containers within the pod.
	// See: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
	//
	RestartPolicy RestartPolicy `field:"optional" json:"restartPolicy" yaml:"restartPolicy"`
	// SecurityContext holds pod-level security attributes and common container settings.
	SecurityContext *PodSecurityContextProps `field:"optional" json:"securityContext" yaml:"securityContext"`
	// A service account provides an identity for processes that run in a Pod.
	//
	// When you (a human) access the cluster (for example, using kubectl), you are
	// authenticated by the apiserver as a particular User Account (currently this
	// is usually admin, unless your cluster administrator has customized your
	// cluster). Processes in containers inside pods can also contact the
	// apiserver. When they do, they are authenticated as a particular Service
	// Account (for example, default).
	// See: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
	//
	ServiceAccount IServiceAccount `field:"optional" json:"serviceAccount" yaml:"serviceAccount"`
	// List of volumes that can be mounted by containers belonging to the pod.
	//
	// You can also add volumes later using `podSpec.addVolume()`
	// See: https://kubernetes.io/docs/concepts/storage/volumes
	//
	Volumes *[]Volume `field:"optional" json:"volumes" yaml:"volumes"`
	// The pod metadata of this workload.
	PodMetadata *cdk8s.ApiObjectMetadata `field:"optional" json:"podMetadata" yaml:"podMetadata"`
	// Automatically allocates a pod label selector for this workload and add it to the pod metadata.
	//
	// This ensures this workload manages pods created by
	// its pod template.
	Select *bool `field:"optional" json:"select" yaml:"select"`
	// Automatically spread pods across hostname and zones.
	// See: https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#internal-default-constraints
	//
	Spread *bool `field:"optional" json:"spread" yaml:"spread"`
	// Service to associate with the statefulset.
	Service Service `field:"required" json:"service" yaml:"service"`
	// Minimum duration for which a newly created pod should be ready without any of its container crashing, for it to be considered available.
	//
	// Zero means the pod will be considered available as soon as it is ready.
	//
	// This is an alpha field and requires enabling StatefulSetMinReadySeconds feature gate.
	// See: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#min-ready-seconds
	//
	MinReady cdk8s.Duration `field:"optional" json:"minReady" yaml:"minReady"`
	// Pod management policy to use for this statefulset.
	PodManagementPolicy PodManagementPolicy `field:"optional" json:"podManagementPolicy" yaml:"podManagementPolicy"`
	// Number of desired pods.
	Replicas *float64 `field:"optional" json:"replicas" yaml:"replicas"`
	// Indicates the StatefulSetUpdateStrategy that will be employed to update Pods in the StatefulSet when a revision is made to Template.
	Strategy StatefulSetUpdateStrategy `field:"optional" json:"strategy" yaml:"strategy"`
}

Properties for initialization of `StatefulSet`.

type StatefulSetUpdateStrategy ΒΆ

type StatefulSetUpdateStrategy interface {
}

StatefulSet update strategies.

func StatefulSetUpdateStrategy_OnDelete ΒΆ

func StatefulSetUpdateStrategy_OnDelete() StatefulSetUpdateStrategy

The controller will not automatically update the Pods in a StatefulSet.

Users must manually delete Pods to cause the controller to create new Pods that reflect modifications.

func StatefulSetUpdateStrategy_RollingUpdate ΒΆ

func StatefulSetUpdateStrategy_RollingUpdate(options *StatefulSetUpdateStrategyRollingUpdateOptions) StatefulSetUpdateStrategy

The controller will delete and recreate each Pod in the StatefulSet.

It will proceed in the same order as Pod termination (from the largest ordinal to the smallest), updating each Pod one at a time. The Kubernetes control plane waits until an updated Pod is Running and