gmath

package module
v1.1.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jul 6, 2025 License: MIT Imports: 2 Imported by: 0

README

gmath

A Generic wrapper around the Golang math library to minimize the amount of casting you have to do.

No consideration is taken about the incoming types and if they'll be truncated; this is a fairly dumb wrapper.

Documentation

Overview

GENERATED! DO NOT EDIT

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func Abs

func Abs[N Number](x N) N

Abs returns the absolute value of x.

Special cases are:

Abs(±Inf) = +Inf Abs(NaN) = NaN

func Acos

func Acos[N Number](x N) N

Acos returns the arccosine, in radians, of x.

Special case is:

Acos(x) = NaN if x < -1 or x > 1

func Acosh

func Acosh[N Number](x N) N

Acosh returns the inverse hyperbolic cosine of x.

Special cases are:

Acosh(+Inf) = +Inf Acosh(x) = NaN if x < 1 Acosh(NaN) = NaN

func Asin

func Asin[N Number](x N) N

Asin returns the arcsine, in radians, of x.

Special cases are:

Asin(±0) = ±0 Asin(x) = NaN if x < -1 or x > 1

func Asinh

func Asinh[N Number](x N) N

Asinh returns the inverse hyperbolic sine of x.

Special cases are:

Asinh(±0) = ±0 Asinh(±Inf) = ±Inf Asinh(NaN) = NaN

func Atan

func Atan[N Number](x N) N

Atan returns the arctangent, in radians, of x.

Special cases are:

Atan(±0) = ±0 Atan(±Inf) = ±Pi/2

func Atan2

func Atan2[N Number](y N, x N) N

Atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value.

Special cases are (in order):

Atan2(y, NaN) = NaN Atan2(NaN, x) = NaN Atan2(+0, x>=0) = +0 Atan2(-0, x>=0) = -0 Atan2(+0, x<=-0) = +Pi Atan2(-0, x<=-0) = -Pi Atan2(y>0, 0) = +Pi/2 Atan2(y<0, 0) = -Pi/2 Atan2(+Inf, +Inf) = +Pi/4 Atan2(-Inf, +Inf) = -Pi/4 Atan2(+Inf, -Inf) = 3Pi/4 Atan2(-Inf, -Inf) = -3Pi/4 Atan2(y, +Inf) = 0 Atan2(y>0, -Inf) = +Pi Atan2(y<0, -Inf) = -Pi Atan2(+Inf, x) = +Pi/2 Atan2(-Inf, x) = -Pi/2

func Atanh

func Atanh[N Number](x N) N

Atanh returns the inverse hyperbolic tangent of x.

Special cases are:

Atanh(1) = +Inf Atanh(±0) = ±0 Atanh(-1) = -Inf Atanh(x) = NaN if x < -1 or x > 1 Atanh(NaN) = NaN

func Cbrt

func Cbrt[N Number](x N) N

Cbrt returns the cube root of x.

Special cases are:

Cbrt(±0) = ±0 Cbrt(±Inf) = ±Inf Cbrt(NaN) = NaN

func Ceil

func Ceil[N Number](x N) N

Ceil returns the least integer value greater than or equal to x.

Special cases are:

Ceil(±0) = ±0 Ceil(±Inf) = ±Inf Ceil(NaN) = NaN

func Copysign

func Copysign[N Number](f N, sign N) N

Copysign returns a value with the magnitude of f and the sign of sign.

func Cos

func Cos[N Number](x N) N

Cos returns the cosine of the radian argument x.

Special cases are:

Cos(±Inf) = NaN Cos(NaN) = NaN

func Cosh

func Cosh[N Number](x N) N

Cosh returns the hyperbolic cosine of x.

Special cases are:

Cosh(±0) = 1 Cosh(±Inf) = +Inf Cosh(NaN) = NaN

func Dim

func Dim[N Number](x N, y N) N

Dim returns the maximum of x-y or 0.

Special cases are:

Dim(+Inf, +Inf) = NaN Dim(-Inf, -Inf) = NaN Dim(x, NaN) = Dim(NaN, x) = NaN

func Erf

func Erf[N Number](x N) N

Erf returns the error function of x.

Special cases are:

Erf(+Inf) = 1 Erf(-Inf) = -1 Erf(NaN) = NaN

func Erfc

func Erfc[N Number](x N) N

Erfc returns the complementary error function of x.

Special cases are:

Erfc(+Inf) = 0 Erfc(-Inf) = 2 Erfc(NaN) = NaN

func Erfcinv

func Erfcinv[N Number](x N) N

Erfcinv returns the inverse of Erfc(x).

Special cases are:

Erfcinv(0) = +Inf Erfcinv(2) = -Inf Erfcinv(x) = NaN if x < 0 or x > 2 Erfcinv(NaN) = NaN

func Erfinv

func Erfinv[N Number](x N) N

Erfinv returns the inverse error function of x.

Special cases are:

Erfinv(1) = +Inf Erfinv(-1) = -Inf Erfinv(x) = NaN if x < -1 or x > 1 Erfinv(NaN) = NaN

func Exp

func Exp[N Number](x N) N

Exp returns e**x, the base-e exponential of x.

Special cases are:

Exp(+Inf) = +Inf Exp(NaN) = NaN

Very large values overflow to 0 or +Inf. Very small values underflow to 1.

func Exp2

func Exp2[N Number](x N) N

Exp2 returns 2**x, the base-2 exponential of x.

Special cases are the same as Exp.

func Expm1

func Expm1[N Number](x N) N

Expm1 returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero.

Special cases are:

Expm1(+Inf) = +Inf Expm1(-Inf) = -1 Expm1(NaN) = NaN

Very large values overflow to -1 or +Inf.

func FMA

func FMA[N Number](x N, y N, z N) N

FMA returns x * y + z, computed with only one rounding. (That is, FMA returns the fused multiply-add of x, y, and z.)

func Floor

func Floor[N Number](x N) N

Floor returns the greatest integer value less than or equal to x.

Special cases are:

Floor(±0) = ±0 Floor(±Inf) = ±Inf Floor(NaN) = NaN

func Frexp

func Frexp[N Number, I constraints.Integer](f N) (frac N, exp I)

Frexp breaks f into a normalized fraction and an integral power of two. It returns frac and exp satisfying f == frac × 2**exp, with the absolute value of frac in the interval [½, 1).

Special cases are:

Frexp(±0) = ±0, 0 Frexp(±Inf) = ±Inf, 0 Frexp(NaN) = NaN, 0

func Gamma

func Gamma[N Number](x N) N

Gamma returns the Gamma function of x.

Special cases are:

Gamma(+Inf) = +Inf Gamma(+0) = +Inf Gamma(-0) = -Inf Gamma(x) = NaN for integer x < 0 Gamma(-Inf) = NaN Gamma(NaN) = NaN

func Hypot

func Hypot[N Number](p N, q N) N

Hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow.

Special cases are:

Hypot(±Inf, q) = +Inf Hypot(p, ±Inf) = +Inf Hypot(NaN, q) = NaN Hypot(p, NaN) = NaN

func Ilogb

func Ilogb[N Number, I constraints.Integer](x N) I

Ilogb returns the binary exponent of x as an integer.

Special cases are:

Ilogb(±Inf) = MaxInt32 Ilogb(0) = MinInt32 Ilogb(NaN) = MaxInt32

func Inf

func Inf[N Number, I constraints.Integer](sign I) N

Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.

func IsInf

func IsInf[N Number, I constraints.Integer](f N, sign I) bool

IsInf reports whether f is an infinity, according to sign. If sign > 0, IsInf reports whether f is positive infinity. If sign < 0, IsInf reports whether f is negative infinity. If sign == 0, IsInf reports whether f is either infinity.

func IsNaN

func IsNaN[N Number](f N) (is bool)

IsNaN reports whether f is an IEEE 754 “not-a-number” value.

func J0

func J0[N Number](x N) N

J0 returns the order-zero Bessel function of the first kind.

Special cases are:

J0(±Inf) = 0 J0(0) = 1 J0(NaN) = NaN

func J1

func J1[N Number](x N) N

J1 returns the order-one Bessel function of the first kind.

Special cases are:

J1(±Inf) = 0 J1(NaN) = NaN

func Jn

func Jn[N Number, I constraints.Integer](n I, x N) N

Jn returns the order-n Bessel function of the first kind.

Special cases are:

Jn(n, ±Inf) = 0 Jn(n, NaN) = NaN

func Ldexp

func Ldexp[N Number, I constraints.Integer](frac N, exp I) N

Ldexp is the inverse of Frexp. It returns frac × 2**exp.

Special cases are:

Ldexp(±0, exp) = ±0 Ldexp(±Inf, exp) = ±Inf Ldexp(NaN, exp) = NaN

func Lgamma

func Lgamma[N Number, I constraints.Integer](x N) (lgamma N, sign I)

Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).

Special cases are:

Lgamma(+Inf) = +Inf Lgamma(0) = +Inf Lgamma(-integer) = +Inf Lgamma(-Inf) = -Inf Lgamma(NaN) = NaN

func Log

func Log[N Number](x N) N

Log returns the natural logarithm of x.

Special cases are:

Log(+Inf) = +Inf Log(0) = -Inf Log(x < 0) = NaN Log(NaN) = NaN

func Log10

func Log10[N Number](x N) N

Log10 returns the decimal logarithm of x. The special cases are the same as for Log.

func Log1p

func Log1p[N Number](x N) N

Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero.

Special cases are:

Log1p(+Inf) = +Inf Log1p(±0) = ±0 Log1p(-1) = -Inf Log1p(x < -1) = NaN Log1p(NaN) = NaN

func Log2

func Log2[N Number](x N) N

Log2 returns the binary logarithm of x. The special cases are the same as for Log.

func Logb

func Logb[N Number](x N) N

Logb returns the binary exponent of x.

Special cases are:

Logb(±Inf) = +Inf Logb(0) = -Inf Logb(NaN) = NaN

func Max

func Max[N Number](x N, y N) N

Max returns the larger of x or y.

Special cases are:

Max(x, +Inf) = Max(+Inf, x) = +Inf Max(x, NaN) = Max(NaN, x) = NaN Max(+0, ±0) = Max(±0, +0) = +0 Max(-0, -0) = -0

Note that this differs from the built-in function max when called with NaN and +Inf.

func Min

func Min[N Number](x N, y N) N

Min returns the smaller of x or y.

Special cases are:

Min(x, -Inf) = Min(-Inf, x) = -Inf Min(x, NaN) = Min(NaN, x) = NaN Min(-0, ±0) = Min(±0, -0) = -0

Note that this differs from the built-in function min when called with NaN and -Inf.

func Mod

func Mod[N Number](x N, y N) N

Mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.

Special cases are:

Mod(±Inf, y) = NaN Mod(NaN, y) = NaN Mod(x, 0) = NaN Mod(x, ±Inf) = x Mod(x, NaN) = NaN

func Modf

func Modf[N Number](f N) (int N, frac N)

Modf returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f.

Special cases are:

Modf(±Inf) = ±Inf, NaN Modf(NaN) = NaN, NaN

func Pow

func Pow[N Number](x N, y N) N

Pow returns x**y, the base-x exponential of y.

Special cases are (in order):

Pow(x, ±0) = 1 for any x Pow(1, y) = 1 for any y Pow(x, 1) = x for any x Pow(NaN, y) = NaN Pow(x, NaN) = NaN Pow(±0, y) = ±Inf for y an odd integer < 0 Pow(±0, -Inf) = +Inf Pow(±0, +Inf) = +0 Pow(±0, y) = +Inf for finite y < 0 and not an odd integer Pow(±0, y) = ±0 for y an odd integer > 0 Pow(±0, y) = +0 for finite y > 0 and not an odd integer Pow(-1, ±Inf) = 1 Pow(x, +Inf) = +Inf for |x| > 1 Pow(x, -Inf) = +0 for |x| > 1 Pow(x, +Inf) = +0 for |x| < 1 Pow(x, -Inf) = +Inf for |x| < 1 Pow(+Inf, y) = +Inf for y > 0 Pow(+Inf, y) = +0 for y < 0 Pow(-Inf, y) = Pow(-0, -y) Pow(x, y) = NaN for finite x < 0 and finite non-integer y

func Pow10

func Pow10[N Number, I constraints.Integer](n I) N

Pow10 returns 10**n, the base-10 exponential of n.

Special cases are:

Pow10(n) = 0 for n < -323 Pow10(n) = +Inf for n > 308

func Remainder

func Remainder[N Number](x N, y N) N

Remainder returns the IEEE 754 floating-point remainder of x/y.

Special cases are:

Remainder(±Inf, y) = NaN Remainder(NaN, y) = NaN Remainder(x, 0) = NaN Remainder(x, ±Inf) = x Remainder(x, NaN) = NaN

func Round

func Round[N Number](x N) N

Round returns the nearest integer, rounding half away from zero.

Special cases are:

Round(±0) = ±0 Round(±Inf) = ±Inf Round(NaN) = NaN

func RoundToEven

func RoundToEven[N Number](x N) N

RoundToEven returns the nearest integer, rounding ties to even.

Special cases are:

RoundToEven(±0) = ±0 RoundToEven(±Inf) = ±Inf RoundToEven(NaN) = NaN

func Signbit

func Signbit[N Number](x N) bool

Signbit reports whether x is negative or negative zero.

func Sin

func Sin[N Number](x N) N

Sin returns the sine of the radian argument x.

Special cases are:

Sin(±0) = ±0 Sin(±Inf) = NaN Sin(NaN) = NaN

func Sincos

func Sincos[N Number](x N) (sin N, cos N)

Sincos returns Sin(x), Cos(x).

Special cases are:

Sincos(±0) = ±0, 1 Sincos(±Inf) = NaN, NaN Sincos(NaN) = NaN, NaN

func Sinh

func Sinh[N Number](x N) N

Sinh returns the hyperbolic sine of x.

Special cases are:

Sinh(±0) = ±0 Sinh(±Inf) = ±Inf Sinh(NaN) = NaN

func Sqrt

func Sqrt[N Number](x N) N

Sqrt returns the square root of x.

Special cases are:

Sqrt(+Inf) = +Inf Sqrt(±0) = ±0 Sqrt(x < 0) = NaN Sqrt(NaN) = NaN

func Tan

func Tan[N Number](x N) N

Tan returns the tangent of the radian argument x.

Special cases are:

Tan(±0) = ±0 Tan(±Inf) = NaN Tan(NaN) = NaN

func Tanh

func Tanh[N Number](x N) N

Tanh returns the hyperbolic tangent of x.

Special cases are:

Tanh(±0) = ±0 Tanh(±Inf) = ±1 Tanh(NaN) = NaN

func Trunc

func Trunc[N Number](x N) N

Trunc returns the integer value of x.

Special cases are:

Trunc(±0) = ±0 Trunc(±Inf) = ±Inf Trunc(NaN) = NaN

func Y0

func Y0[N Number](x N) N

Y0 returns the order-zero Bessel function of the second kind.

Special cases are:

Y0(+Inf) = 0 Y0(0) = -Inf Y0(x < 0) = NaN Y0(NaN) = NaN

func Y1

func Y1[N Number](x N) N

Y1 returns the order-one Bessel function of the second kind.

Special cases are:

Y1(+Inf) = 0 Y1(0) = -Inf Y1(x < 0) = NaN Y1(NaN) = NaN

func Yn

func Yn[N Number, I constraints.Integer](n I, x N) N

Yn returns the order-n Bessel function of the second kind.

Special cases are:

Yn(n, +Inf) = 0 Yn(n ≥ 0, 0) = -Inf Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even Yn(n, x < 0) = NaN Yn(n, NaN) = NaN

Types

type Number

type Number interface {
	constraints.Float | constraints.Integer
}

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL