Documentation
¶
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func AreaMatch ¶
AreaMatch computes how close the areas from the two boxes are (0-1). 1-perfect match
func RatioMatch ¶
RatioMatch computes how close the bbox dimensions from the two bboxes are (0-1). 1-perfect match
func ResizeFromCenter ¶
ResizeFromCenter resizes a bounding box by a scale factor from its center
Types ¶
type KalmanBoxTracker ¶
type KalmanBoxTracker struct { ID int64 Updates int Predicts int PredictsSinceUpdate int UpdatesWithoutPredict int SkipPredicts int LastBBox []float64 LastBBoxIOU []float64 // history [][]float64 LastResiduals []float64 KalmanFilter kalman.Filter KalmanCtrl *mat.VecDense KalmanCtx *kalman.Context }
KalmanBoxTracker This class represents the internel state of individual tracked objects observed as bbox.
func NewKalmanBoxTracker ¶
func NewKalmanBoxTracker(bbox []float64) (KalmanBoxTracker, error)
NewKalmanBoxTracker Initialises a tracker using initial bounding box.
func (*KalmanBoxTracker) CurrentPrediction ¶
func (k *KalmanBoxTracker) CurrentPrediction() []float64
CurrentPrediction get last prediction results
func (*KalmanBoxTracker) CurrentState ¶
func (k *KalmanBoxTracker) CurrentState() []float64
CurrentState Returns the current bounding box estimate.
func (*KalmanBoxTracker) PredictNext ¶
func (k *KalmanBoxTracker) PredictNext() []float64
PredictNext Advances the state vector and returns the predicted bounding box estimate.
type SORT ¶
type SORT struct { Trackers []*KalmanBoxTracker FrameCount int // contains filtered or unexported fields }
SORT Detection tracking
func (*SORT) Update ¶
Update update trackers from detections
Params: dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] Requires: this method must be called once for each frame even with empty detections. Returns the a similar array, where the last column is the object ID. NOTE: The number of objects returned may differ from the number of detections provided.