Documentation
¶
Overview ¶
Package matrixprofile computes the matrix profile and matrix profile index of a time series
Example ¶
sig := []float64{0, 0.99, 1, 0, 0, 0.98, 1, 0, 0, 0.96, 1, 0} mp, err := New(sig, nil, 4) if err != nil { panic(err) } if err = mp.Stomp(1); err != nil { panic(err) } fmt.Printf("Signal: %.3f\n", sig) fmt.Printf("Matrix Profile: %.3f\n", mp.MP) fmt.Printf("Profile Index: %5d\n", mp.Idx)
Output: Signal: [0.000 0.990 1.000 0.000 0.000 0.980 1.000 0.000 0.000 0.960 1.000 0.000] Matrix Profile: [0.014 0.014 0.029 0.029 0.014 0.014 0.029 0.029 0.029] Profile Index: [ 4 5 6 7 0 1 2 3 4]
Example (CaseStudy) ¶
sin := siggen.Sin(1, 5, 0, 0, 100, 2) sin2 := siggen.Sin(0.25, 10, 0, 0.75, 100, 0.25) saw := siggen.Sawtooth(0.5, 7, 0, 0, 100, 1) line := siggen.Line(0, 0, len(sin2)*4) sig := siggen.Append(sin, sin2, sin, line, sin2, line, sin2, line, saw) noise := siggen.Noise(0.1, len(sig)) sig = siggen.Add(sig, noise) var m, k int var r float64 m = 32 k = 6 r = 3 mp, err := New(sig, nil, m) if err != nil { panic(err) } if err = mp.Stomp(2); err != nil { panic(err) } _, _, cac := mp.Segment() motifs, err := mp.TopKMotifs(k, r) if err != nil { panic(err) } discords, err := mp.TopKDiscords(3, mp.M/2) if err != nil { panic(err) } sigPts := Points(sig, len(sig)) mpPts := Points(mp.MP, len(sig)) cacPts := Points(cac, len(sig)) motifPts := make([][]plotter.XYs, k) discordPts := make([]plotter.XYs, k) discordLabels := make([]string, k) for i := 0; i < k; i++ { motifPts[i] = make([]plotter.XYs, len(motifs[i].Idx)) } for i := 0; i < k; i++ { for j, idx := range motifs[i].Idx { motifPts[i][j] = Points(sig[idx:idx+m], m) } } for i, idx := range discords { discordPts[i] = Points(sig[idx:idx+m], m) discordLabels[i] = strconv.Itoa(idx) } if err = PlotMP(sigPts, mpPts, cacPts, motifPts, discordPts, discordLabels, "../mp_sine.png"); err != nil { panic(err) } fmt.Println("Saved png file result to mp_sine.png")
Output: Saved png file result to mp_sine.png
Example (KDimensionalCaseStudy) ¶
sin := siggen.Sin(1, 4, 0, 0, 100, 0.25) saw := siggen.Sawtooth(1, 4, 0, 0, 100, 0.25) square := siggen.Square(1, 4, 0, 0, 100, 0.25) line := siggen.Line(0, 0, len(sin)*4) line2 := siggen.Line(0, 0, len(sin)*3) sig := make([][]float64, 3) sig[0] = siggen.Append(line, line, line, saw, line2, saw, line2) sig[1] = siggen.Append(line, sin, line2, sin, line2, sin, line2, sin, line2) sig[2] = siggen.Append(line, square, line2, square, line2, square, line2, square, line2) noise := siggen.Noise(0.1, len(sig[0])) sig[0] = siggen.Add(sig[0], noise) noise = siggen.Noise(0.1, len(sig[0])) sig[1] = siggen.Add(sig[1], noise) noise = siggen.Noise(0.1, len(sig[0])) sig[2] = siggen.Add(sig[2], noise) var m int m = 25 mp, err := NewK(sig, m) if err != nil { panic(err) } if err = mp.MStomp(); err != nil { panic(err) } sigPts := make([]plotter.XYs, 3) sigPts[0] = Points(sig[0], len(sig[0])) sigPts[1] = Points(sig[1], len(sig[0])) sigPts[2] = Points(sig[2], len(sig[0])) mpPts := make([]plotter.XYs, 3) mpPts[0] = Points(mp.MP[0], len(sig[0])) mpPts[1] = Points(mp.MP[1], len(sig[0])) mpPts[2] = Points(mp.MP[2], len(sig[0])) if err = PlotKMP(sigPts, mpPts, "../mp_kdim.png"); err != nil { panic(err) } fmt.Println("Saved png file result to mp_kdim.png")
Output: Saved png file result to mp_kdim.png
Index ¶
- Variables
- func MakeClippingAV(d []float64, m int) []float64
- func MakeCompexityAV(d []float64, m int) []float64
- func MakeDefaultAV(d []float64, m int) []float64
- func MakeMeanStdAV(d []float64, m int) []float64
- func ZNormalize(ts []float64) ([]float64, error)
- type KMatrixProfile
- type MatrixProfile
- func (mp MatrixProfile) ApplyAV(av []float64) ([]float64, error)
- func (mp MatrixProfile) GetAV() ([]float64, error)
- func (mp MatrixProfile) Segment() (int, float64, []float64)
- func (mp *MatrixProfile) Stamp(sample float64, parallelism int) error
- func (mp *MatrixProfile) StampUpdate(newValues []float64) error
- func (mp *MatrixProfile) Stmp() error
- func (mp *MatrixProfile) Stomp(parallelism int) error
- func (mp MatrixProfile) TopKDiscords(k int, exclusionZone int) ([]int, error)
- func (mp MatrixProfile) TopKMotifs(k int, r float64) ([]MotifGroup, error)
- type MotifGroup
Examples ¶
Constants ¶
This section is empty.
Variables ¶
var ( // DefaultAV is the default annotation vector of all ones DefaultAV = "default" // ComplexityAV is the annotation vector that focuses on areas of high "complexity" ComplexityAV = "complexity" // MeanStdAV is the annotation vector focusing on areas where the signal is within a // standard deviation of the mean MeanStdAV = "meanstd" // ClippingAV is the annotation vector reducing the importance of areas showing clipping // effects on the positive and negative regime ClippingAV = "clipping" )
Functions ¶
func MakeClippingAV ¶
MakeClippingAV creates an annotation vector by setting subsequences with more clipping on the positive or negative side of the signal to lower importance.
func MakeCompexityAV ¶
MakeCompexityAV creates an annotation vector that is based on the complexity estimation of the signal.
func MakeDefaultAV ¶ added in v0.2.0
MakeDefaultAV creates a default annotation vector of all ones resulting in no change to the matrix profile when applied
func MakeMeanStdAV ¶
MakeMeanStdAV creates an annotation vector by setting any values above the mean of the standard deviation vector to 0 and below to 1.
func ZNormalize ¶ added in v0.2.0
ZNormalize computes a z-normalized version of a slice of floats. This is represented by y[i] = (x[i] - mean(x))/std(x)
Types ¶
type KMatrixProfile ¶
type KMatrixProfile struct { MP [][]float64 // matrix profile Idx [][]int // matrix profile index // contains filtered or unexported fields }
KMatrixProfile is a struct that tracks the current k-dimensional matrix profile computation for a given slice of timeseries of length N and subsequence length of M. The profile and the profile index are stored here.
func NewK ¶
func NewK(t [][]float64, m int) (*KMatrixProfile, error)
NewK creates a matrix profile struct specifically to be used with the k dimensional matrix profile computation. The number of rows represents the number of dimensions, and each row holds a series of points of equal length as each other.
func (*KMatrixProfile) MStomp ¶
func (mp *KMatrixProfile) MStomp() error
MStomp computes the k dimensional matrix profile
type MatrixProfile ¶
type MatrixProfile struct { A []float64 // query time series B []float64 // timeseries to perform full join with AMean []float64 // sliding mean of a with a window of m each AStd []float64 // sliding standard deviation of a with a window of m each BMean []float64 // sliding mean of b with a window of m each BStd []float64 // sliding standard deviation of b with a window of m each BF []complex128 // holds an existing calculation of the FFT of b timeseries N int // length of the timeseries M int // length of a subsequence SelfJoin bool // indicates whether a self join is performed with an exclusion zone MP []float64 // matrix profile Idx []int // matrix profile index AV string // type of annotation vector which defaults to all ones }
MatrixProfile is a struct that tracks the current matrix profile computation for a given timeseries of length N and subsequence length of M. The profile and the profile index are stored here.
func New ¶
func New(a, b []float64, m int) (*MatrixProfile, error)
New creates a matrix profile struct with a given timeseries length n and subsequence length of m. The first slice, a, is used as the initial timeseries to join with the second, b. If b is nil, then the matrix profile assumes a self join on the first timeseries.
func (MatrixProfile) ApplyAV ¶
func (mp MatrixProfile) ApplyAV(av []float64) ([]float64, error)
ApplyAV applies an annotation vector to the current matrix profile. Annotation vector values must be between 0 and 1.
func (MatrixProfile) GetAV ¶ added in v0.2.0
func (mp MatrixProfile) GetAV() ([]float64, error)
GetAV returns the annotation vector given the matrix profile configured AV field
func (MatrixProfile) Segment ¶
func (mp MatrixProfile) Segment() (int, float64, []float64)
Segment finds the the index where there may be a potential timeseries change. Returns the index of the potential change, value of the corrected arc curve score and the histogram of all the crossings for each index in the matrix profile index. This approach is based on the UCR paper on segmentation of timeseries using matrix profiles which can be found https://www.cs.ucr.edu/%7Eeamonn/Segmentation_ICDM.pdf
Example ¶
// generate a signal mainly composed of sine waves and switches // frequencies, amplitude, and offset midway through // amplitude of 1, frequency of 5Hz, sampling frequency of 100 Hz, // time of 2 seconds sin := siggen.Sin(1, 5, 0, 0, 100, 2) // amplitude of 0.25, frequency of 10Hz, offset of 0.75, sampling // frequency of 100 Hz, time of 1 second sin2 := siggen.Sin(0.25, 10, 0, 0.75, 100, 1) sig := siggen.Append(sin, sin2) // noise with an amplitude of 0.1 noise := siggen.Noise(0.01, len(sig)) sig = siggen.Add(sig, noise) // create a new MatrixProfile struct using the signal and a // subsequence length of 32. The second subsequence is set to nil // so we perform a self join. mp, err := New(sig, nil, 32) if err != nil { panic(err) } // run the STMP algorithm with self join. The matrix profile // will be stored in mp.MP and the matrix profile index will // be stored in mp.Idx if err = mp.Stmp(); err != nil { panic(err) } // segment the timeseries using the number of arc crossings over // each index in the matrix profile index idx, cac, _ := mp.Segment() fmt.Printf("Signal change foud at index: %d\n", idx) fmt.Printf("Corrected Arc Curve (CAC) value: %.3f\n", cac)
Output: Signal change foud at index: 194 Corrected Arc Curve (CAC) value: 0.000
func (*MatrixProfile) Stamp ¶
func (mp *MatrixProfile) Stamp(sample float64, parallelism int) error
Stamp uses random ordering to compute the matrix profile. User can specify the sample to be anything between 0 and 1 so that the computation early terminates and provides the current computed matrix profile. 1 represents the exact matrix profile. This should compute far faster at the cost of an approximation of the matrix profile. Stores the matrix profile and matrix profile index in the struct.
Example ¶
// generate a signal mainly composed of sine waves and switches // frequencies, amplitude, and offset midway through // amplitude of 1, frequency of 5Hz, sampling frequency of 100 Hz, // time of 2 seconds sin := siggen.Sin(1, 5, 0, 0, 100, 2) // amplitude of 0.25, frequency of 10Hz, offset of 0.75, sampling // frequency of 100 Hz, time of 1 second sin2 := siggen.Sin(0.25, 10, 0, 0.75, 100, 1) sig := siggen.Append(sin, sin2) // noise with an amplitude of 0.1 noise := siggen.Noise(0.1, len(sig)) sig = siggen.Add(sig, noise) // create a new MatrixProfile struct using the signal and a // subsequence length of 32. The second subsequence is set to nil // so we perform a self join. mp, err := New(sig, nil, 32) if err != nil { panic(err) } // run the STAMP algorithm with self join and a sample of 0.2 of // all subsequences. The matrix profile will be stored in mp.MP // and the matrix profile index will be stored in mp.Idx if err = mp.Stamp(0.2, 2); err != nil { panic(err) }
Output:
func (*MatrixProfile) StampUpdate ¶
func (mp *MatrixProfile) StampUpdate(newValues []float64) error
StampUpdate updates a matrix profile and matrix profile index in place providing streaming like behavior.
func (*MatrixProfile) Stmp ¶
func (mp *MatrixProfile) Stmp() error
Stmp computes the full matrix profile given two time series as inputs. If the second time series is set to nil then a self join on the first will be performed. Stores the matrix profile and matrix profile index in the struct.
Example ¶
// generate a signal mainly composed of sine waves and switches // frequencies, amplitude, and offset midway through // amplitude of 1, frequency of 5Hz, sampling frequency of 100 Hz, // time of 2 seconds sin := siggen.Sin(1, 5, 0, 0, 100, 2) // amplitude of 0.25, frequency of 10Hz, offset of 0.75, sampling // frequency of 100 Hz, time of 1 second sin2 := siggen.Sin(0.25, 10, 0, 0.75, 100, 1) sig := siggen.Append(sin, sin2) // noise with an amplitude of 0.1 noise := siggen.Noise(0.1, len(sig)) sig = siggen.Add(sig, noise) // create a new MatrixProfile struct using the signal and a // subsequence length of 32. The second subsequence is set to nil // so we perform a self join. mp, err := New(sig, nil, 32) if err != nil { panic(err) } // run the STMP algorithm with self join. The matrix profile // will be stored in mp.MP and the matrix profile index will // be stored in mp.Idx if err = mp.Stmp(); err != nil { panic(err) }
Output:
func (*MatrixProfile) Stomp ¶
func (mp *MatrixProfile) Stomp(parallelism int) error
Stomp is an optimization on the STAMP approach reducing the runtime from O(n^2logn) down to O(n^2). This is an ordered approach, since the sliding dot product or cross correlation can be easily updated for the next sliding window, if the previous window dot product is available. This should also greatly reduce the number of memory allocations needed to compute an arbitrary timeseries length.
Example ¶
// generate a signal mainly composed of sine waves and switches // frequencies, amplitude, and offset midway through // amplitude of 1, frequency of 5Hz, sampling frequency of 100 Hz, // time of 2 seconds sin := siggen.Sin(1, 5, 0, 0, 100, 2) // amplitude of 0.25, frequency of 10Hz, offset of 0.75, sampling // frequency of 100 Hz, time of 1 second sin2 := siggen.Sin(0.25, 10, 0, 0.75, 100, 1) sig := siggen.Append(sin, sin2) // noise with an amplitude of 0.1 noise := siggen.Noise(0.1, len(sig)) sig = siggen.Add(sig, noise) // create a new MatrixProfile struct using the signal and a // subsequence length of 32. The second subsequence is set to nil // so we perform a self join. mp, err := New(sig, nil, 32) if err != nil { panic(err) } // run the STOMP algorithm with self join. The matrix profile // will be stored in mp.MP and the matrix profile index will // be stored in mp.Idx if err = mp.Stomp(1); err != nil { panic(err) }
Output:
func (MatrixProfile) TopKDiscords ¶
func (mp MatrixProfile) TopKDiscords(k int, exclusionZone int) ([]int, error)
TopKDiscords finds the top k time series discords starting indexes from a computed matrix profile. Each discovery of a discord will apply an exclusion zone around the found index so that new discords can be discovered.
func (MatrixProfile) TopKMotifs ¶
func (mp MatrixProfile) TopKMotifs(k int, r float64) ([]MotifGroup, error)
TopKMotifs will iteratively go through the matrix profile to find the top k motifs with a given radius. Only applies to self joins.
Example ¶
// generate a signal mainly composed of sine waves and switches // frequencies, amplitude, and offset midway through // amplitude of 1, frequency of 5Hz, sampling frequency of 100 Hz, // time of 2 seconds sin := siggen.Sin(1, 5, 0, 0, 100, 2) // amplitude of 0.25, frequency of 10Hz, offset of 0.75, sampling // frequency of 100 Hz, time of 1 second sin2 := siggen.Sin(0.25, 10, 0, 0.75, 100, 1) sig := siggen.Append(sin, sin2) // create a new MatrixProfile struct using the signal and a // subsequence length of 32. The second subsequence is set to nil // so we perform a self join. mp, err := New(sig, nil, 32) if err != nil { panic(err) } // run the STMP algorithm with self join. The matrix profile // will be stored in mp.MP and the matrix profile index will // be stored in mp.Idx if err = mp.Stmp(); err != nil { panic(err) } // finds the top 3 motifs in the signal. Motif groups include // all subsequences that are within 2 times the distance of the // original motif pair motifs, err := mp.TopKMotifs(2, 2) if err != nil { panic(err) } for i, mg := range motifs { fmt.Printf("Motif Group %d\n", i) fmt.Printf(" %d motifs\n", len(mg.Idx)) }
Output: Motif Group 0 2 motifs Motif Group 1 2 motifs
type MotifGroup ¶
MotifGroup stores a list of indices representing a similar motif along with the minimum distance that this set of motif composes of.