model-manager

module
v0.75.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jun 17, 2024 License: Apache-2.0

README

Model Manager

Model Manager consists of the following components;

  • server: Serve gRPC requests and HTTP requests
  • loadedr: Load open models to the system

loader currently loads open models from Hugging Face, but we can extend that to support other locations.

Running with Docker Compose

Run the following command:

docker-compose build
docker-compose up

You can access to the database or hit the HTTP endpoint:

docker exec -it <postgres container ID> psql -h localhost -U user --no-password -p 5432 -d model_manager

curl http://localhost:8080/v1/models

docker exec -it <aws-cli container ID> bash
export AWS_ACCESS_KEY_ID=llm-operator-key
export AWS_SECRET_ACCESS_KEY=llm-operator-secret
aws --endpoint-url http://minio:9000 s3 ls s3://llm-operator

Running server Locally

make build-server
./bin/server run --config config.yaml

config.yaml has the following content:

httpPort: 8080
grpcPort: 8081
internalGrpcPort: 8082

objectStore:
  s3:
    pathPrefix: models

debug:
  standalone: true
  sqlitePath: /tmp/model_manager.db

You can then connect to the DB.

sqlite3 /tmp/model_manager.db
# Run the query inside the database.
insert into models
  (model_id, tenant_id, created_at, updated_at)
values
  ('my-model', 'fake-tenant-id', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP);

You can then hit the endpoint.

curl http://localhost:8080/v1/models

grpcurl -d '{"base_model": "base", "suffix": "suffix", "tenant_id": "fake-tenant-id"}' -plaintext localhost:8082 list llmoperator.models.server.v1.ModelsInternalService/CreateModel

Uploading models to S3 bucket llm-operator-models

Run loader with the following config.yaml:

$ cat config.yaml

objectStore:
  s3:
    endpointUrl: https://s3.us-west-2.amazonaws.com
    region: us-west-2
    bucket: llm-operator-models
    pathPrefix: v1
    baseModelPathPrefix: base-models

baseModels:
- google/gemma-2b

runOnce: true

downloader:
  kind: huggingFace
  huggingFace:
    # Change this to your cache directory.
    cacheDir: /Users/kenji/.cache/huggingface/hub

debug:
  standalone: true

$ export AWS_PROFILE=<profile that has access to the bucket>
$ ./bin/loader run --config config.yaml
Generating a GGUF file

There might not be a GGUF file in Hugging Face repositories. If so, run the following command to convert:

MODEL_NAME=meta-llama/Meta-Llama-3-8B-Instruct
git clone https://github.com/ggerganov/llama.cpp
cd llama.cp

mkdir hf-model-dir
huggingface-cli download "${MODEL_NAME}" --local-dir=hf-model-dir
python3 convert-hf-to-gguf.py --outtype=f32 ./hf-model-dir --outfile model.gguf
Quantizing

See https://github.com/ggerganov/llama.cpp/discussions/2948 and https://github.com/ollama/ollama/blob/main/docs/import.md.

make build-docker-convert-gguf

# Mount the volume where a original model is stored (without symlink).
docker run \
  -it \
  --entrypoint /bin/bash \
  -v /Users/kenji/base-models:/base-models \
  llm-operator/experiments-convert_gguf:latest

python convert.py /base-models --outfile google-gemma-2b-q8_0 --outtype q8_0

Here is another example:

git clone https://github.com/ggerganov/llama.cpp
cd llama.cp
make quantize

python convert-hf-to-gguf.py <model-path> --outtype f16 --outfile converted.bin
./quantize converted.bin quantized.bin q4_0

Directories

Path Synopsis
api
v1
Package v1 is a reverse proxy.
Package v1 is a reverse proxy.
loader
cmd command
server
cmd command

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL