< Previous
Next >
Given a directed acyclic graph (DAG) of n
nodes labeled from 0 to n - 1, find all possible paths from node 0
to node n - 1
, and return them in any order.
The graph is given as follows: graph[i]
is a list of all nodes you can visit from node i
(i.e., there is a directed edge from node i
to node graph[i][j]
).
Example 1:
Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Example 2:
Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
Example 3:
Input: graph = [[1],[]]
Output: [[0,1]]
Example 4:
Input: graph = [[1,2,3],[2],[3],[]]
Output: [[0,1,2,3],[0,2,3],[0,3]]
Example 5:
Input: graph = [[1,3],[2],[3],[]]
Output: [[0,1,2,3],[0,3]]
Constraints:
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i
(i.e., there will be no self-loops).
- The input graph is guaranteed to be a DAG.
[Depth-first Search]
[Graph]
[Backtracking]