Documentation ¶
Index ¶
Constants ¶
const ( VersionTLS10 = 0x0301 VersionTLS11 = 0x0302 VersionTLS12 = 0x0303 VersionTLS13 = 0x0304 // Deprecated: SSLv3 is cryptographically broken, and will be // removed in Go 1.14. See golang.org/issue/32716. VersionSSL30 = 0x0300 )
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Certificate ¶
type Certificate struct { Certificate [][]byte // PrivateKey contains the private key corresponding to the public key in // Leaf. This must implement crypto.Signer with an RSA, ECDSA or Ed25519 PublicKey. // For a server up to TLS 1.2, it can also implement crypto.Decrypter with // an RSA PublicKey. PrivateKey crypto.PrivateKey // OCSPStaple contains an optional OCSP response which will be served // to clients that request it. OCSPStaple []byte // SignedCertificateTimestamps contains an optional list of Signed // Certificate Timestamps which will be served to clients that request it. SignedCertificateTimestamps [][]byte // Leaf is the parsed form of the leaf certificate, which may be // initialized using x509.ParseCertificate to reduce per-handshake // processing for TLS clients doing client authentication. If nil, the // leaf certificate will be parsed as needed. Leaf *x509.Certificate }
A Certificate is a chain of one or more certificates, leaf first.
type CertificateRequestInfo ¶
type CertificateRequestInfo struct { // AcceptableCAs contains zero or more, DER-encoded, X.501 // Distinguished Names. These are the names of root or intermediate CAs // that the server wishes the returned certificate to be signed by. An // empty slice indicates that the server has no preference. AcceptableCAs [][]byte // SignatureSchemes lists the signature schemes that the server is // willing to verify. SignatureSchemes []SignatureScheme }
CertificateRequestInfo contains information from a server's CertificateRequest message, which is used to demand a certificate and proof of control from a client.
type ClientAuthType ¶
type ClientAuthType int
ClientAuthType declares the policy the server will follow for TLS Client Authentication.
const ( NoClientCert ClientAuthType = iota RequestClientCert RequireAnyClientCert VerifyClientCertIfGiven RequireAndVerifyClientCert )
type ClientHelloInfo ¶
type ClientHelloInfo struct { // CipherSuites lists the CipherSuites supported by the client (e.g. // TLS_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256). CipherSuites []uint16 // ServerName indicates the name of the server requested by the client // in order to support virtual hosting. ServerName is only set if the // client is using SNI (see RFC 4366, Section 3.1). ServerName string // SupportedCurves lists the elliptic curves supported by the client. // SupportedCurves is set only if the Supported Elliptic Curves // Extension is being used (see RFC 4492, Section 5.1.1). SupportedCurves []CurveID // SupportedPoints lists the point formats supported by the client. // SupportedPoints is set only if the Supported Point Formats Extension // is being used (see RFC 4492, Section 5.1.2). SupportedPoints []uint8 // SignatureSchemes lists the signature and hash schemes that the client // is willing to verify. SignatureSchemes is set only if the Signature // Algorithms Extension is being used (see RFC 5246, Section 7.4.1.4.1). SignatureSchemes []SignatureScheme // SupportedProtos lists the application protocols supported by the client. // SupportedProtos is set only if the Application-Layer Protocol // Negotiation Extension is being used (see RFC 7301, Section 3.1). // // Servers can select a protocol by setting Config.NextProtos in a // GetConfigForClient return value. SupportedProtos []string // SupportedVersions lists the TLS versions supported by the client. // For TLS versions less than 1.3, this is extrapolated from the max // version advertised by the client, so values other than the greatest // might be rejected if used. SupportedVersions []uint16 // Conn is the underlying net.Conn for the connection. Do not read // from, or write to, this connection; that will cause the TLS // connection to fail. Conn net.Conn }
ClientHelloInfo contains information from a ClientHello message in order to guide certificate selection in the GetCertificate callback.
type ClientSessionCache ¶
type ClientSessionCache interface { // Get searches for a ClientSessionState associated with the given key. // On return, ok is true if one was found. Get(sessionKey string) (session *ClientSessionState, ok bool) // Put adds the ClientSessionState to the cache with the given key. It might // get called multiple times in a connection if a TLS 1.3 server provides // more than one session ticket. If called with a nil *ClientSessionState, // it should remove the cache entry. Put(sessionKey string, cs *ClientSessionState) }
ClientSessionCache is a cache of ClientSessionState objects that can be used by a client to resume a TLS session with a given server. ClientSessionCache implementations should expect to be called concurrently from different goroutines. Up to TLS 1.2, only ticket-based resumption is supported, not SessionID-based resumption. In TLS 1.3 they were merged into PSK modes, which are supported via this interface.
func NewLRUClientSessionCache ¶
func NewLRUClientSessionCache(capacity int) ClientSessionCache
NewLRUClientSessionCache returns a ClientSessionCache with the given capacity that uses an LRU strategy. If capacity is < 1, a default capacity is used instead.
type ClientSessionState ¶
type ClientSessionState struct {
// contains filtered or unexported fields
}
ClientSessionState contains the state needed by clients to resume TLS sessions.
type Config ¶
type Config struct { // Rand provides the source of entropy for nonces and RSA blinding. // If Rand is nil, TLS uses the cryptographic random reader in package // crypto/rand. // The Reader must be safe for use by multiple goroutines. Rand io.Reader // Time returns the current time as the number of seconds since the epoch. // If Time is nil, TLS uses time.Now. Time func() time.Time // Certificates contains one or more certificate chains to present to // the other side of the connection. Server configurations must include // at least one certificate or else set GetCertificate. Clients doing // client-authentication may set either Certificates or // GetClientCertificate. Certificates []Certificate // NameToCertificate maps from a certificate name to an element of // Certificates. Note that a certificate name can be of the form // '*.example.com' and so doesn't have to be a domain name as such. // See Config.BuildNameToCertificate // The nil value causes the first element of Certificates to be used // for all connections. NameToCertificate map[string]*Certificate // GetCertificate returns a Certificate based on the given // ClientHelloInfo. It will only be called if the client supplies SNI // information or if Certificates is empty. // // If GetCertificate is nil or returns nil, then the certificate is // retrieved from NameToCertificate. If NameToCertificate is nil, the // first element of Certificates will be used. GetCertificate func(*ClientHelloInfo) (*Certificate, error) // GetClientCertificate, if not nil, is called when a server requests a // certificate from a client. If set, the contents of Certificates will // be ignored. // // If GetClientCertificate returns an error, the handshake will be // aborted and that error will be returned. Otherwise // GetClientCertificate must return a non-nil Certificate. If // Certificate.Certificate is empty then no certificate will be sent to // the server. If this is unacceptable to the server then it may abort // the handshake. // // GetClientCertificate may be called multiple times for the same // connection if renegotiation occurs or if TLS 1.3 is in use. GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error) // GetConfigForClient, if not nil, is called after a ClientHello is // received from a client. It may return a non-nil Config in order to // change the Config that will be used to handle this connection. If // the returned Config is nil, the original Config will be used. The // Config returned by this callback may not be subsequently modified. // // If GetConfigForClient is nil, the Config passed to Server() will be // used for all connections. // // Uniquely for the fields in the returned Config, session ticket keys // will be duplicated from the original Config if not set. // Specifically, if SetSessionTicketKeys was called on the original // config but not on the returned config then the ticket keys from the // original config will be copied into the new config before use. // Otherwise, if SessionTicketKey was set in the original config but // not in the returned config then it will be copied into the returned // config before use. If neither of those cases applies then the key // material from the returned config will be used for session tickets. GetConfigForClient func(*ClientHelloInfo) (*Config, error) // VerifyPeerCertificate, if not nil, is called after normal // certificate verification by either a TLS client or server. It // receives the raw ASN.1 certificates provided by the peer and also // any verified chains that normal processing found. If it returns a // non-nil error, the handshake is aborted and that error results. // // If normal verification fails then the handshake will abort before // considering this callback. If normal verification is disabled by // setting InsecureSkipVerify, or (for a server) when ClientAuth is // RequestClientCert or RequireAnyClientCert, then this callback will // be considered but the verifiedChains argument will always be nil. VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error // RootCAs defines the set of root certificate authorities // that clients use when verifying server certificates. // If RootCAs is nil, TLS uses the host's root CA set. RootCAs *x509.CertPool // NextProtos is a list of supported application level protocols, in // order of preference. NextProtos []string // ServerName is used to verify the hostname on the returned // certificates unless InsecureSkipVerify is given. It is also included // in the client's handshake to support virtual hosting unless it is // an IP address. ServerName string // ClientAuth determines the server's policy for // TLS Client Authentication. The default is NoClientCert. ClientAuth ClientAuthType // ClientCAs defines the set of root certificate authorities // that servers use if required to verify a client certificate // by the policy in ClientAuth. ClientCAs *x509.CertPool // InsecureSkipVerify controls whether a client verifies the // server's certificate chain and host name. // If InsecureSkipVerify is true, TLS accepts any certificate // presented by the server and any host name in that certificate. // In this mode, TLS is susceptible to man-in-the-middle attacks. // This should be used only for testing. InsecureSkipVerify bool // CipherSuites is a list of supported cipher suites for TLS versions up to // TLS 1.2. If CipherSuites is nil, a default list of secure cipher suites // is used, with a preference order based on hardware performance. The // default cipher suites might change over Go versions. Note that TLS 1.3 // ciphersuites are not configurable. CipherSuites []uint16 // PreferServerCipherSuites controls whether the server selects the // client's most preferred ciphersuite, or the server's most preferred // ciphersuite. If true then the server's preference, as expressed in // the order of elements in CipherSuites, is used. PreferServerCipherSuites bool // SessionTicketsDisabled may be set to true to disable session ticket and // PSK (resumption) support. Note that on clients, session ticket support is // also disabled if ClientSessionCache is nil. SessionTicketsDisabled bool // SessionTicketKey is used by TLS servers to provide session resumption. // See RFC 5077 and the PSK mode of RFC 8446. If zero, it will be filled // with random data before the first server handshake. // // If multiple servers are terminating connections for the same host // they should all have the same SessionTicketKey. If the // SessionTicketKey leaks, previously recorded and future TLS // connections using that key might be compromised. SessionTicketKey [32]byte // ClientSessionCache is a cache of ClientSessionState entries for TLS // session resumption. It is only used by clients. ClientSessionCache ClientSessionCache // MinVersion contains the minimum SSL/TLS version that is acceptable. // If zero, then TLS 1.0 is taken as the minimum. MinVersion uint16 // MaxVersion contains the maximum SSL/TLS version that is acceptable. // If zero, then the maximum version supported by this package is used, // which is currently TLS 1.3. MaxVersion uint16 // CurvePreferences contains the elliptic curves that will be used in // an ECDHE handshake, in preference order. If empty, the default will // be used. The client will use the first preference as the type for // its key share in TLS 1.3. This may change in the future. CurvePreferences []CurveID // DynamicRecordSizingDisabled disables adaptive sizing of TLS records. // When true, the largest possible TLS record size is always used. When // false, the size of TLS records may be adjusted in an attempt to // improve latency. DynamicRecordSizingDisabled bool // Renegotiation controls what types of renegotiation are supported. // The default, none, is correct for the vast majority of applications. Renegotiation RenegotiationSupport // KeyLogWriter optionally specifies a destination for TLS master secrets // in NSS key log format that can be used to allow external programs // such as Wireshark to decrypt TLS connections. // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format. // Use of KeyLogWriter compromises security and should only be // used for debugging. KeyLogWriter io.Writer // Copy the TLS HELLO from target Fingerprint // Format: "771,4865-4866-4867-49195-49199-49196-49200-52393-52392-49171-49172-156-157-47-53-10,0-23-65281-10-11-35-16-5-13-18-51-45-43-27-21,29-23-24,0" // Where: "TLSVersion,TLSCiphers,TLSExtensions,ElipticCurves,EliptipCurveFormat" TlsFingerprint string // contains filtered or unexported fields }
Add "TlsFingerprint" -- Rebujacker
func (*Config) BuildNameToCertificate ¶
func (c *Config) BuildNameToCertificate()
BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate from the CommonName and SubjectAlternateName fields of each of the leaf certificates.
func (*Config) Clone ¶
Clone returns a shallow clone of c. It is safe to clone a Config that is being used concurrently by a TLS client or server.
func (*Config) SetSessionTicketKeys ¶
SetSessionTicketKeys updates the session ticket keys for a server. The first key will be used when creating new tickets, while all keys can be used for decrypting tickets. It is safe to call this function while the server is running in order to rotate the session ticket keys. The function will panic if keys is empty.
type ConnectionState ¶
type ConnectionState struct { Version uint16 // TLS version used by the connection (e.g. VersionTLS12) HandshakeComplete bool // TLS handshake is complete DidResume bool // connection resumes a previous TLS connection CipherSuite uint16 // cipher suite in use (TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, ...) NegotiatedProtocol string // negotiated next protocol (not guaranteed to be from Config.NextProtos) NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server (client side only) ServerName string // server name requested by client, if any (server side only) PeerCertificates []*x509.Certificate // certificate chain presented by remote peer VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates SignedCertificateTimestamps [][]byte // SCTs from the peer, if any OCSPResponse []byte // stapled OCSP response from peer, if any // TLSUnique contains the "tls-unique" channel binding value (see RFC // 5929, section 3). For resumed sessions this value will be nil // because resumption does not include enough context (see // https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will // change in future versions of Go once the TLS master-secret fix has // been standardized and implemented. It is not defined in TLS 1.3. TLSUnique []byte // contains filtered or unexported fields }
ConnectionState records basic TLS details about the connection.
func (*ConnectionState) ExportKeyingMaterial ¶
func (cs *ConnectionState) ExportKeyingMaterial(label string, context []byte, length int) ([]byte, error)
ExportKeyingMaterial returns length bytes of exported key material in a new slice as defined in RFC 5705. If context is nil, it is not used as part of the seed. If the connection was set to allow renegotiation via Config.Renegotiation, this function will return an error.
type CurveID ¶
type CurveID uint16
CurveID is the type of a TLS identifier for an elliptic curve. See https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8.
In TLS 1.3, this type is called NamedGroup, but at this time this library only supports Elliptic Curve based groups. See RFC 8446, Section 4.2.7.
type RenegotiationSupport ¶
type RenegotiationSupport int
RenegotiationSupport enumerates the different levels of support for TLS renegotiation. TLS renegotiation is the act of performing subsequent handshakes on a connection after the first. This significantly complicates the state machine and has been the source of numerous, subtle security issues. Initiating a renegotiation is not supported, but support for accepting renegotiation requests may be enabled.
Even when enabled, the server may not change its identity between handshakes (i.e. the leaf certificate must be the same). Additionally, concurrent handshake and application data flow is not permitted so renegotiation can only be used with protocols that synchronise with the renegotiation, such as HTTPS.
Renegotiation is not defined in TLS 1.3.
const ( // RenegotiateNever disables renegotiation. RenegotiateNever RenegotiationSupport = iota // RenegotiateOnceAsClient allows a remote server to request // renegotiation once per connection. RenegotiateOnceAsClient // RenegotiateFreelyAsClient allows a remote server to repeatedly // request renegotiation. RenegotiateFreelyAsClient )
type SignatureScheme ¶
type SignatureScheme uint16
SignatureScheme identifies a signature algorithm supported by TLS. See RFC 8446, Section 4.2.3.
const ( // RSASSA-PKCS1-v1_5 algorithms. PKCS1WithSHA256 SignatureScheme = 0x0401 PKCS1WithSHA384 SignatureScheme = 0x0501 PKCS1WithSHA512 SignatureScheme = 0x0601 // RSASSA-PSS algorithms with public key OID rsaEncryption. PSSWithSHA256 SignatureScheme = 0x0804 PSSWithSHA384 SignatureScheme = 0x0805 PSSWithSHA512 SignatureScheme = 0x0806 // ECDSA algorithms. Only constrained to a specific curve in TLS 1.3. ECDSAWithP256AndSHA256 SignatureScheme = 0x0403 ECDSAWithP384AndSHA384 SignatureScheme = 0x0503 ECDSAWithP521AndSHA512 SignatureScheme = 0x0603 // EdDSA algorithms. Ed25519 SignatureScheme = 0x0807 // Legacy signature and hash algorithms for TLS 1.2. PKCS1WithSHA1 SignatureScheme = 0x0201 ECDSAWithSHA1 SignatureScheme = 0x0203 )