testing

package
v1.0.45 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 11, 2023 License: Apache-2.0 Imports: 5 Imported by: 0

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func AssertHomomorphism

func AssertHomomorphism[HKTA, HKTB, HKTAB, A, B any](t *testing.T,
	eq E.Eq[HKTB],

	fofa func(A) HKTA,
	fofb func(B) HKTB,
	fofab func(func(A) B) HKTAB,

	fap func(HKTAB, HKTA) HKTB,

	ab func(A) B,
) func(a A) bool

Applicative homomorphism law

A.ap(A.of(ab), A.of(a)) <-> A.of(ab(a))

func AssertIdentity

func AssertIdentity[HKTA, HKTAA, A any](t *testing.T,
	eq E.Eq[HKTA],

	fof func(func(A) A) HKTAA,

	fap func(HKTAA, HKTA) HKTA,
) func(fa HKTA) bool

Applicative identity law

A.ap(A.of(a => a), fa) <-> fa

func AssertInterchange

func AssertInterchange[HKTA, HKTB, HKTAB, HKTABB, A, B any](t *testing.T,
	eq E.Eq[HKTB],

	fofa func(A) HKTA,
	fofb func(B) HKTB,
	fofab func(func(A) B) HKTAB,
	fofabb func(func(func(A) B) B) HKTABB,

	fapab func(HKTAB, HKTA) HKTB,
	fapabb func(HKTABB, HKTAB) HKTB,

	ab func(A) B,
) func(a A) bool

Applicative interchange law

A.ap(fab, A.of(a)) <-> A.ap(A.of(ab => ab(a)), fab)

func AssertLaws

func AssertLaws[HKTA, HKTB, HKTC, HKTAA, HKTAB, HKTBC, HKTAC, HKTABB, HKTABAC, A, B, C any](t *testing.T,
	eqa E.Eq[HKTA],
	eqb E.Eq[HKTB],
	eqc E.Eq[HKTC],

	fofa func(A) HKTA,
	fofb func(B) HKTB,

	fofaa func(func(A) A) HKTAA,
	fofab func(func(A) B) HKTAB,
	fofbc func(func(B) C) HKTBC,
	fofabb func(func(func(A) B) B) HKTABB,

	faa func(HKTA, func(A) A) HKTA,
	fab func(HKTA, func(A) B) HKTB,
	fac func(HKTA, func(A) C) HKTC,
	fbc func(HKTB, func(B) C) HKTC,

	fmap func(HKTBC, func(func(B) C) func(func(A) B) func(A) C) HKTABAC,

	fapaa func(HKTAA, HKTA) HKTA,
	fapab func(HKTAB, HKTA) HKTB,
	fapbc func(HKTBC, HKTB) HKTC,
	fapac func(HKTAC, HKTA) HKTC,

	fapabb func(HKTABB, HKTAB) HKTB,
	fapabac func(HKTABAC, HKTAB) HKTAC,

	ab func(A) B,
	bc func(B) C,
) func(a A) bool

AssertLaws asserts the apply laws `identity`, `composition`, `associative composition`, 'applicative identity', 'homomorphism', 'interchange'

Types

This section is empty.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL