testcase

package module
v0.17.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 18, 2020 License: Apache-2.0 Imports: 10 Imported by: 0

README

Table of Contents

Mentioned in Awesome Go GoDoc Build Status Go Report Card codecov

testcase

The testcase package provides tooling to apply BDD testing conventions.

Getting Started

Example

The examples managed in godoc, please read the documentation example section for more.

A Basic example:

func TestMessageWrapper(t *testing.T) {
	s := testcase.NewSpec(t)
	s.NoSideEffect()

	message := testcase.Var{Name: `message`}

	messageWrapper := s.Let(`myType`, func(t *testcase.T) interface{} {
		return MessageWrapper{Message: message.Get(t).(string)}
	})

	s.Describe(`#LookupMessage`, func(s *testcase.Spec) {
		subject := func(t *testcase.T) (string, bool) {
			return messageWrapper.Get(t).(MessageWrapper).LookupMessage()
		}

		s.When(`message is empty`, func(s *testcase.Spec) {
			message.LetValue(s, ``)

			s.Then(`it will return with "ok" as false`, func(t *testcase.T) {
				_, ok := subject(t)
				require.False(t, ok)
			})
		})

		s.When(`message is not zero`, func(s *testcase.Spec) {
			message.LetValue(s, fixtures.Random.String())

			s.Then(`it will return with "ok" as true`, func(t *testcase.T) {
				_, ok := subject(t)
				require.True(t, ok)
			})

			s.Then(`message received back`, func(t *testcase.T) {
				msg, _ := subject(t)
				require.Equal(t, message.Get(t), msg)
			})
		})
	})
}

Modules

  • httpspec
    • spec module helps you create HTTP API Specs.
  • fixtures
    • fixtures module helps you create random input values for testing

Summary

DRY

testcase provides a way to express common Arrange, Act sections for the Asserts with DRY principle in mind.

  • First you can define your Act section with a method under test as the subject of your test specification
    • The Act section invokes the method under test with the arranged parameters.
  • Then you can build the context of the Act by Arranging the inputs later with humanly explained reasons
    • The Arrange section initializes objects and sets the value of the data that is passed to the method under test.
  • And lastly you can define the test expected outcome in an Assert section.
    • The Assert section verifies that the action of the method under test behaves as expected.

Then adding an additional test edge case to the testing suite becomes easier, as it will have a concrete place where it must be placed.

And if during the creation of the specification, an edge case turns out to be YAGNI, it can be noted, so visually it will be easier to see what edge case is not specified for the given subject.

The value it gives is that to build test for a certain edge case, the required mental model size to express the context becomes smaller, as you only have to focus on one Arrange at a time, until you fully build the bigger picture.

It also implicitly visualize the required mental model of your production code by the nesting. You can read more on that in the nesting section.

Modularization

On top of the DRY convention, any time you need to Arrange a common scenario about your projects domain event, you can modularize these setup blocks in a helper functions.

This helps the readability of the test, while keeping the need of mocks to the minimum as possible for a given test. As a side effect, integration tests can become low hanging fruit for the project.

e.g.:

package mypkg_test

import (
	"testing"

	"my/project/mypkg"


	"github.com/adamluzsi/testcase"

	. "my/project/testing/pkg"
)

func TestMyTypeMyFunc(t *testing.T) {
	s := testcase.NewSpec(t)

	// high level Arrange helpers from my/project/testing/pkg
	SetupSpec(s)
	GivenWeHaveUser(s, `myuser`)
	// .. other givens

	myType := func() *mypkg.MyType { return &mypkg.MyType{} }

	s.Describe(`#MyFunc`, func(s *testcase.Spec) {
		var subject = func(t *testcase.T) { myType().MyFunc(t.I(`myuser`).(*mypkg.User)) } // Act

		s.Then(`edge case description`, func(t *testcase.T) {
			// Assert
			subject(t)
		})
	})
}

Stability

  • The package considered stable.
  • The package use rolling release conventions.
  • No breaking change is planned to the package exported API.
  • The package used for production development.
  • The package API is only extended if the practical use case proves its necessity.

Case Study About testcase Package Origin

Reference Project

Documentation

Overview

Package testcase implements two approaches to help you to do nested BDD style testing in golang.

Spec Variables

in your spec, you can use the `*testcase.variables` object, for fetching values for your objects. Using them is gives you the ability to create value for them, only when you are in the right testing scope that responsible for providing an example for the expected value.

In test case scopes you will receive a structure ptr called `*testcase.variables` which will represent values that you configured for your test case with `Let`.

Values in `*testcase.variables` are safe to use during T#Parallel.

Spec Hooks

Hooks help you setup common things for each test case. For example clean ahead, clean up, mock expectation configuration, and similar things can be done in hooks, so your test case blocks with `Then` only represent the expected result(s).

In case you work with something that depends on side-effects, such as database tests, you can use the hooks, to create clean-ahead / clean-up blocks.

Also if you use gomock, you can use the spec#Around function, to set up the mock with a controller, and in the teardown function, call the gomock.Controller#Finish function, so your test cases will be only about what is the different behavior from the rest of the test cases.

It will panic if you use hooks or variable preparation in an ambiguous way, or when you try to access variable that doesn't exist in the context where you do so. It tries to panic with friendly and supportive messages, but that is highly subjective.

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type Spec

type Spec struct {
	// contains filtered or unexported fields
}

Spec provides you a struct that makes building nested test context easy with the core T#Context function.

spec structure is a simple wrapping around the testing.T#Context. It doesn't use any global singleton cache object or anything like that. It doesn't force you to use global vars.

It uses the same idiom as the core go testing pkg also provide you. You can use the same way as the core testing pkg

go run ./... -vars -run "the/name/of/the/test/it/print/out/in/case/of/failure"

It allows you to do context preparation for each test in a way, that it will be safe for use with testing.T#Parallel.

Example
package main

import (
	"github.com/adamluzsi/testcase"
	"github.com/adamluzsi/testcase/fixtures"
	"testing"

	"github.com/stretchr/testify/require"
)

type MessageWrapper struct {
	Message string
}

func (mt MessageWrapper) LookupMessage() (string, bool) {
	if mt.Message == `` {
		return ``, false
	}

	return mt.Message, true
}

func TestMessageWrapper(t *testing.T) {
	s := testcase.NewSpec(t)
	s.NoSideEffect()

	message := testcase.Var{Name: `message`}

	messageWrapper := s.Let(`myType`, func(t *testcase.T) interface{} {
		return MessageWrapper{Message: message.Get(t).(string)}
	})

	s.Describe(`#LookupMessage`, func(s *testcase.Spec) {
		subject := func(t *testcase.T) (string, bool) {
			return messageWrapper.Get(t).(MessageWrapper).LookupMessage()
		}

		s.When(`message is empty`, func(s *testcase.Spec) {
			message.LetValue(s, ``)

			s.Then(`it will return with "ok" as false`, func(t *testcase.T) {
				_, ok := subject(t)
				require.False(t, ok)
			})
		})

		s.When(`message is not zero`, func(s *testcase.Spec) {
			message.LetValue(s, fixtures.Random.String())

			s.Then(`it will return with "ok" as true`, func(t *testcase.T) {
				_, ok := subject(t)
				require.True(t, ok)
			})

			s.Then(`message received back`, func(t *testcase.T) {
				msg, _ := subject(t)
				require.Equal(t, message.Get(t), msg)
			})
		})
	})
}

func main() {
	var t *testing.T
	TestMessageWrapper(t)
}
Output:

Example (MyType)
package main

import (
	"fmt"
	"strings"
	"testing"

	"github.com/stretchr/testify/require"

	"github.com/adamluzsi/testcase"
)

type RoleInterface interface {
	Say() string
}

type MyType struct {
	MyResource RoleInterface
}

func (mt *MyType) MyFunc() {}

func (mt *MyType) IsLower(s string) bool {
	return strings.ToLower(s) == s
}

func (mt *MyType) Fallible() (string, error) {
	return "", nil
}

type MyResourceSupplier struct{}

func (MyResourceSupplier) Say() string {
	return `Hello, world!`
}

func main() {
	var t *testing.T

	// spec do not use any global magic
	// it is just a simple abstraction around testing.T#Context
	// Basically you can easily can run it as you would any other go test
	//   -> `go run ./... -v -run "my/edge/case/nested/block/I/want/to/run/only"`
	//
	spec := testcase.NewSpec(t)

	// when you have no side effects in your testing suite,
	// you can enable Parallel execution.
	// You can Call Parallel even from nested specs to apply Parallel testing for that context and below.
	spec.Parallel()
	// or
	spec.NoSideEffect()

	// testcase.variables are thread safe way of setting up complex contexts
	// where some variable need to have different values for edge cases.
	// and I usually work with in-memory implementation for certain shared specs,
	// to make my test coverage run fast and still close to somewhat reality in terms of integration.
	// and to me, it is a necessary thing to have "T#Parallel" option safely available
	var myType = func(t *testcase.T) *MyType {
		return &MyType{}
	}

	spec.Describe(`IsLower`, func(s *testcase.Spec) {
		// it is a convention to me to always make a subject for a certain describe block
		//
		var subject = func(t *testcase.T) bool {
			return myType(t).IsLower(t.I(`input`).(string))
		}

		s.When(`input string has lower case characters`, func(s *testcase.Spec) {
			s.LetValue(`input`, `all lower case`)

			s.Before(func(t *testcase.T) {
				// here you can do setups like cleanup for DB tests
			})

			s.After(func(t *testcase.T) {
				// here you can setup a teardown
			})

			s.Around(func(t *testcase.T) func() {
				// here you can setup things that need teardown
				// such example to me is when I use gomock.Controller and mock setup

				return func() {
					// you can do teardown in this
					// this func will be defered after the test cases
				}
			})

			s.And(`the first character is capitalized`, func(s *testcase.Spec) {
				// you can add more nesting for more concrete specifications,
				// in each nested block, you work on a separate variable stack,
				// so even if you overwrite something here,
				// that has no effect outside of this scope
				s.LetValue(`input`, `First character is uppercase`)

				s.Then(`it will report false`, func(t *testcase.T) {
					require.False(t, subject(t),
						fmt.Sprintf(`it was expected that %q will be reported to be not lowercase`, t.I(`input`)))
				})

			})

			s.Then(`it will return true`, func(t *testcase.T) {
				require.True(t, subject(t),
					fmt.Sprintf(`it was expected that the %q will re reported to be lowercase`, t.I(`input`)))
			})
		})
	})

	spec.Describe(`Fallible`, func(s *testcase.Spec) {
		var subject = func(t *testcase.T) (string, error) {
			return myType(t).Fallible()
		}

		var onSuccess = func(t *testcase.T) string {
			someMeaningfulVarName, err := subject(t)
			require.Nil(t, err)
			return someMeaningfulVarName
		}

		s.When(`input is an empty string`, func(s *testcase.Spec) {
			s.LetValue(`input`, ``)

			s.Then(`it will return an empty string`, func(t *testcase.T) {
				require.Equal(t, "", onSuccess(t))
			})
		})
	})
}
Output:

Example (WhenProjectUseSharedSpecificationHelpers)
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
	// . "my/project/testing/pkg"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)
	SetupSpec(s)

	GivenWeHaveUser(s, `myuser`) // Arrange
	// .. other givens

	myType := func() *MyType { return &MyType{} }

	s.Describe(`#MyFunc`, func(s *testcase.Spec) {
		var subject = func(t *testcase.T) { myType().MyFunc() } // Act

		s.Then(`edge case description`, func(t *testcase.T) {
			// Assert
			subject(t)
		})
	})
}

/*
	------------------------------------------------------------------------
	Somewhere else in a project's testing package ("my/project/testing/pkg")
	------------------------------------------------------------------------
*/

func SetupSpec(s *testcase.Spec) {
	s.Let(`storage`, func(t *testcase.T) interface{} {
		// create new storage connection
		// t.Defer(s.Close) after the storage was used in the test
		return nil
	})
	s.Let(`user manager`, func(t *testcase.T) interface{} {
		// new user manager with storage
		return nil
	})
}

func GivenWeHaveUser(s *testcase.Spec, userLetVar string) {
	s.Let(userLetVar, func(t *testcase.T) interface{} {
		// use user manager to create random user with fixtures maybe
		return nil
	})
}
Output:

Example (WithBenchmark)
var b *testing.B
s := testcase.NewSpec(b)

myType := func(t *testcase.T) *MyType {
	return &MyType{}
}

s.When(`something`, func(s *testcase.Spec) {
	s.Before(func(t *testcase.T) {
		t.Log(`setup`)
	})

	s.Then(`this benchmark block will be executed by *testing.B.N times`, func(t *testcase.T) {
		myType(t).IsLower(`Hello, World!`)
	})
})
Output:

func NewSpec

func NewSpec(tb testing.TB) *Spec

NewSpec create new Spec struct that is ready for usage.

func (*Spec) After

func (spec *Spec) After(afterBlock testCaseBlock)

After give you the ability to run a block after each test case. This is ideal for running cleanups. The received *testing.T object is the same as the Then block *testing.T object This hook applied to this scope and anything that is nested from here. All setup block is stackable.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.After(func(t *testcase.T) {
		// this will run after the test cases.
		// this hook applied to this scope and anything that is nested from here.
		// hooks can be stacked with each call.
	})
}
Output:

func (*Spec) And

func (spec *Spec) And(desc string, testContextBlock func(s *Spec))

And is an alias for testcase#Spec.Context And is used to represent additional requirement for reaching a certain testing runtime contexts.

Example
var t *testing.T
s := testcase.NewSpec(t)

var (
	myType  = func(t *testcase.T) *MyType { return &MyType{} }
	subject = func(t *testcase.T) bool { return myType(t).IsLower(t.I(`input`).(string)) }
)

s.When(`input has upcase letter`, func(s *testcase.Spec) {
	s.LetValue(`input`, `UPPER`)

	s.And(`mixed with lowercase letters`, func(s *testcase.Spec) {
		s.LetValue(`input`, `UPPER`)

		s.Then(`it will be false`, func(t *testcase.T) {
			require.False(t, subject(t))
		})
	})

	s.And(`input is all upcase letter`, func(s *testcase.Spec) {
		s.Then(`it will be false`, func(t *testcase.T) {
			require.False(t, subject(t))
		})
	})

	s.Then(`it will be false`, func(t *testcase.T) {
		require.False(t, subject(t))
	})
})
Output:

func (*Spec) Around

func (spec *Spec) Around(aroundBlock hookBlock)

Around give you the ability to create "Before" setup for each test case, with the additional ability that the returned function will be deferred to run after the Then block is done. This is ideal for setting up mocks, and then return the assertion request calls in the return func. This hook applied to this scope and anything that is nested from here. All setup block is stackable.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Around(func(t *testcase.T) func() {
		// this will run before the test cases

		// this hook applied to this scope and anything that is nested from here.
		// hooks can be stacked with each call
		return func() {
			// The content of the returned func will be deferred to run after the test cases.
		}
	})
}
Output:

func (*Spec) Before

func (spec *Spec) Before(beforeBlock testCaseBlock)

Before give you the ability to run a block before each test case. This is ideal for doing clean ahead before each test case. The received *testing.T object is the same as the Test block *testing.T object This hook applied to this scope and anything that is nested from here. All setup block is stackable.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Before(func(t *testcase.T) {
		// this will run before the test cases.
	})
}
Output:

func (*Spec) Context

func (spec *Spec) Context(desc string, testContextBlock func(s *Spec))

Context allow you to create a sub specification for a given spec. In the sub-specification it is expected to add more contextual information to the test in a form of hook of variable setting. With Context you can set your custom test description, without any forced prefix like describe/when/and.

It is basically piggybacking the testing#T.Context and create new subspec in that nested testing#T.Context scope. It is used to add more description context for the given subject. It is highly advised to always use When + Before/Around together, in which you should setup exactly what you wrote in the When description input. You can Context as many When/And within each other, as you want to achieve the most concrete edge case you want to test.

To verify easily your state-machine, you can count the `if`s in your implementation, and check that each `if` has 2 `When` block to represent the two possible path.

Example
var t *testing.T
s := testcase.NewSpec(t)

var (
	myType  = func(t *testcase.T) *MyType { return &MyType{} }
	subject = func(t *testcase.T) bool { return myType(t).IsLower(t.I(`input`).(string)) }
)

s.Context(`when input is in lowercase`, func(s *testcase.Spec) {
	s.LetValue(`input`, `lowercase text`)

	s.Then(`test-case`, func(t *testcase.T) {
		require.True(t, subject(t))
	})
})
Output:

func (*Spec) Describe

func (spec *Spec) Describe(subjectTopic string, specification func(s *Spec))

Describe creates a new spec scope, where you usually describe a subject.

By convention it is highly advised to create a variable `subject` with function that share the return signature of the method you test on a structure, and take *testcase.variables as the only input value. If your method require input values, you should strictly set those values within a `When`/`And` scope. This ensures you have to think trough the possible state-machines paths that are based on the input values.

For functions where 2 value is returned, and the second one is an error, in order to avoid repetitive test cases in the `Then` I often define a `onSuccess` variable, with a function that takes `testcase#variables` as well and test error return value there with `testcase#variables.T()`.

Example
var t *testing.T
s := testcase.NewSpec(t)

var myType = func(_ *testcase.T) *MyType {
	return &MyType{}
}

s.Describe(`IsLower`, func(s *testcase.Spec) {
	var subject = func(t *testcase.T) bool { return myType(t).IsLower(t.I(`input`).(string)) }

	s.LetValue(`input`, `Hello, world!`)

	s.Then(`test-case`, func(t *testcase.T) {
		// it will panic since `input` is not actually set at this testing scope,
		// and the testing framework will warn us about this.
		require.True(t, subject(t))
	})
})
Output:

func (*Spec) HasSideEffect added in v0.9.0

func (spec *Spec) HasSideEffect()

HasSideEffect means that after this call things defined that has software side effect during runtime. This suggest on its own that execution should be sequential in order to avoid flaky tests.

HasSideEffect and NoSideEffect can be used together to describe a given piece of specification properties. Using them at the same location makes little sense, it was intended to be used in spec helper package where setup function handles what resource should be used in the spec variables. This allows flexibility for the developers to use side effect free variant for local development that has quick feedback loop, and replace them with the production implementation during CI/CD pipeline which less time critical.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)
	// this mark the test to contain side effects.
	// this forbids any parallel test execution to avoid flaky tests.
	//
	// Under the hood this is a syntax sugar for Sequential
	s.HasSideEffect()

	s.Test(`this will run in sequence`, func(t *testcase.T) {})

	s.Context(`some context`, func(s *testcase.Spec) {
		s.Test(`this run in sequence`, func(t *testcase.T) {})

		s.Test(`this run in sequence`, func(t *testcase.T) {})
	})
}
Output:

func (*Spec) Let

func (spec *Spec) Let(varName string, blk letBlock) Var

Let define a memoized helper method. Let creates lazily-evaluated test execution bound variables. Let variables don't exist until called into existence by the actual tests, so you won't waste time loading them for examples that don't use them. They're also memoized, so they're useful for encapsulating database objects, due to the cost of making a database request. The value will be cached across all use within the same test execution but not across different test cases. You can eager load a value defined in let by referencing to it in a Before hook. Let is threadsafe, the parallel running test will receive they own test variable instance.

Defining a value in a spec Context will ensure that the scope and it's nested scopes of the current scope will have access to the value. It cannot leak its value outside from the current scope. Calling Let in a nested/sub scope will apply the new value for that value to that scope and below.

It will panic if it is used after a When/And/Then scope definition, because those scopes would have no clue about the later defined variable. In order to keep the specification reading mental model requirement low, it is intentionally not implemented to handle such case. Defining test vars always expected in the beginning of a specification scope, mainly for readability reasons.

vars strictly belong to a given `Describe`/`When`/`And` scope, and configured before any hook would be applied, therefore hooks always receive the most latest version from the `Let` vars, regardless in which scope the hook that use the variable is define.

Let can enhance readability when used sparingly in any given example group, but that can quickly degrade with heavy overuse.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Let(`variable Name`, func(t *testcase.T) interface{} {
		return "value that needs complex construction or can be mutated"
	})

	s.Then(`test case`, func(t *testcase.T) {
		t.Log(t.I(`variable Name`).(string)) // -> "value"
	})
}
Output:

Example (EagerLoading)
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Let(`variable Name`, func(t *testcase.T) interface{} {
		return "value that will be eager loaded before the test/then block reached"
	}).EagerLoading(s)

	s.Then(`test case`, func(t *testcase.T) {
		t.Log(t.I(`variable Name`).(string))
	})
}
Output:

Example (Mock)
//go:generate mockgen -source example_Spec_Let_mock_test.go -destination example_Spec_Let_mock_mocks_test.go -package testcase_test
package main

import (
	"testing"

	"github.com/golang/mock/gomock"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Let(`the-mock`, func(t *testcase.T) interface{} {
		ctrl := gomock.NewController(t)
		mock := NewMockInterfaceExample(ctrl)
		t.Defer(ctrl.Finish)
		return mock
	})

	s.When(`some scope where mock should behave in a certain way`, func(s *testcase.Spec) {
		s.Before(func(t *testcase.T) {
			t.I(`*MockInterfaceExample`).(*MockInterfaceExample).
				EXPECT().
				Say().
				Return(`some value but can also be a value from *testcase.variables`)
		})

		s.Then(`mock will be available in every test case and finish called afterwards`, func(t *testcase.T) {
			// ...
		})
	})
}

type InterfaceExample interface {
	Say() string
}
Output:

Example (SqlDB)
package main

import (
	"database/sql"
	"testing"

	"github.com/stretchr/testify/require"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	// I highly recommend to use *sql.Tx when it is possible for testing.
	// it allows you to have easy teardown
	s.Let(`tx`, func(t *testcase.T) interface{} {
		// it is advised to use a persistent db connection between multiple specification runs,
		// because otherwise `go test -count $times` can receive random connection failures.
		tx, err := getDBConnection(t).Begin()
		if err != nil {
			t.Fatal(err.Error())
		}
		// testcase.T#Defer will execute the received function after the current test edge case
		// where the `tx` test variable were accessed.
		t.Defer(tx.Rollback)
		return tx
	})

	s.When(`something to be prepared in the db`, func(s *testcase.Spec) {
		s.Before(func(t *testcase.T) {
			_, err := t.I(`tx`).(*sql.Tx).Exec(`INSERT INTO "table" ("column") VALUES ($1)`, `value`)
			require.Nil(t, err)
		})

		s.Then(`something will happen`, func(t *testcase.T) {
			// ...
		})
	})

}

func getDBConnection(t testing.TB) *sql.DB {
	// logic to retrieve cached db connection in the testing environment
	return nil
}
Output:

Example (UsageWithinNestedScope)
var t *testing.T
s := testcase.NewSpec(t)

var myType = func(t *testcase.T) *MyType { return &MyType{} }

s.Describe(`IsLower`, func(s *testcase.Spec) {
	var subject = func(t *testcase.T) bool {
		return myType(t).IsLower(t.I(`input`).(string))
	}

	s.When(`input characters are all lowercase`, func(s *testcase.Spec) {
		s.LetValue(`input`, `all lowercase`)

		s.Then(`it will report true`, func(t *testcase.T) {
			require.True(t, subject(t))
		})
	})

	s.When(`input is a capitalized`, func(s *testcase.Spec) {
		s.LetValue(`input`, "Capitalized")

		s.Then(`it will report false`, func(t *testcase.T) {
			require.False(t, subject(t))
		})
	})
})
Output:

func (*Spec) LetValue added in v0.2.1

func (spec *Spec) LetValue(varName string, value interface{}) Var

LetValue is a shorthand for defining immutable vars with Let under the hood. So the function blocks can be skipped, which makes tests more readable.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.LetValue(`variable Name`, "value")

	s.Then(`test case`, func(t *testcase.T) {
		t.Log(t.I(`variable Name`).(string)) // -> "value"
	})
}
Output:

func (*Spec) NoSideEffect added in v0.2.1

func (spec *Spec) NoSideEffect()

NoSideEffect gives a hint to the reader of the current test that during the test execution, no side effect outside from the test specification scope is expected to be observable. It is important to note that this flag primary meant to represent the side effect possibility to the outside of the current testing specification, and not about the test specification's subject.

It is safe to state that if the subject of the test specification has no side effect, then the test specification must have no side effect as well.

If the subject of the test specification do side effect on an input value, then the test specification must have no side effect, as long Let memorization is used.

If the subject of the test specification does mutation on global variables such as OS Variable states for the current process, then it is likely, that even if the changes by the mutation is restored as part of the test specification, the test specification has side effects that would affect other test specification results, and, as such, must be executed sequentially.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)
	// this is an idiom to express that the subject in the tests here are not expected to have any side-effect.
	// this means they are safe to be executed in parallel.
	s.NoSideEffect()

	s.Test(`this will run in parallel`, func(t *testcase.T) {})

	s.Context(`some context`, func(s *testcase.Spec) {
		s.Test(`this run in parallel`, func(t *testcase.T) {})

		s.Test(`this run in parallel`, func(t *testcase.T) {})
	})
}
Output:

func (*Spec) Parallel

func (spec *Spec) Parallel()

Parallel allows you to set all test case for the context where this is being called, and below to nested contexts, to be executed in parallel (concurrently). Keep in mind that you can call Parallel even from nested specs to apply Parallel testing for that context and below. This is useful when your test suite has no side effects at all. Using values from *vars when Parallel is safe. It is a shortcut for executing *testing.T#Parallel() for each test

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)
	s.Parallel() // tells the specs to run all test case in parallel

	s.Test(`this will run in parallel`, func(t *testcase.T) {})

	s.Context(`some context`, func(s *testcase.Spec) {
		s.Test(`this run in parallel`, func(t *testcase.T) {})

		s.Test(`this run in parallel`, func(t *testcase.T) {})
	})
}
Output:

Example (ScopedWithContext)
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Context(`context marked parallel`, func(s *testcase.Spec) {
		s.Parallel()

		s.Test(`this run in parallel`, func(t *testcase.T) {})
	})

	s.Context(`context without parallel`, func(s *testcase.Spec) {

		s.Test(`this will run in sequence`, func(t *testcase.T) {})
	})
}
Output:

func (*Spec) Sequential added in v0.9.0

func (spec *Spec) Sequential()

Sequential allows you to set all test case for the context where this is being called, and below to nested contexts, to be executed sequentially. It will negate any testcase.Spec#Parallel call effect. This is useful when you want to create a spec helper package and there you want to manage if you want to use components side effects or not.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)
	s.Sequential() // tells the specs to run all test case in sequence

	s.Test(`this will run in sequence`, func(t *testcase.T) {})

	s.Context(`some context`, func(s *testcase.Spec) {
		s.Test(`this run in sequence`, func(t *testcase.T) {})

		s.Test(`this run in sequence`, func(t *testcase.T) {})
	})
}
Output:

Example (FromSpecHelper)
package main

import (
	"os"
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)
	Setup(s) // setup specification with spec helper function

	// Tells that the subject of this specification should be software side effect free on its own.
	s.NoSideEffect()

	var myUseCase = func(t *testcase.T) *MyUseCaseThatHasStorageDependency {
		return &MyUseCaseThatHasStorageDependency{Storage: t.I(`storage`).(MyUseCaseStorageRoleInterface)}
	}

	s.Describe(`#SomeMethod`, func(s *testcase.Spec) {
		var subject = func(t *testcase.T) bool {
			return myUseCase(t).SomeMethod()
		}

		s.Test(`it is expected ...`, func(t *testcase.T) {
			if !subject(t) {
				t.Fatal(`assertion failed`)
			}
		})
	})
}

// in some package testing / spechelper
func Setup(s *testcase.Spec) {
	// spec helper function that is environment aware, and can decide what resource should be used in the test runtime.
	env, ok := os.LookupEnv(`TEST_DB_CONNECTION_URL`)

	if ok {
		s.Sequential()
		// or
		s.HasSideEffect()
		s.Let(`storage`, func(t *testcase.T) interface{} {
			// open database connection
			_ = env // use env to connect or something
			return &ExternalResourceBasedStorage{ /*...*/ }
		})
	} else {
		s.Let(`storage`, func(t *testcase.T) interface{} {
			return &InMemoryBasedStorage{}
		})
	}
}

type InMemoryBasedStorage struct{}

type ExternalResourceBasedStorage struct{}

type MyUseCaseThatHasStorageDependency struct {
	Storage MyUseCaseStorageRoleInterface
}

func (d *MyUseCaseThatHasStorageDependency) SomeMethod() bool {
	return false
}

type MyUseCaseStorageRoleInterface interface{}
Output:

Example (ScopedWithContext)
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Parallel() // on top level, spec marked as parallel

	s.Context(`context marked sequential`, func(s *testcase.Spec) {
		s.Sequential() // but in subcontext the test marked as sequential

		s.Test(`this run in sequence`, func(t *testcase.T) {})
	})

	s.Context(`context that inherit parallel flag`, func(s *testcase.Spec) {

		s.Test(`this will run in parallel`, func(t *testcase.T) {})
	})
}
Output:

func (*Spec) Skip added in v0.14.0

func (spec *Spec) Skip(args ...interface{})

Skip is equivalent to Log followed by SkipNow on T for each test case.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Context(`sub context`, func(s *testcase.Spec) {
		s.Skip(`WIP`)

		s.Test(`will be skipped`, func(t *testcase.T) {})

		s.Test(`will be skipped as well`, func(t *testcase.T) {})

		s.Context(`skipped as well just like the tests of the parent`, func(s *testcase.Spec) {
			s.Test(`will be skipped`, func(t *testcase.T) {})
		})
	})

	s.Test(`this will still run since it is not part of the scope where Spec#Skip was called`, func(t *testcase.T) {})
}
Output:

func (*Spec) Tag added in v0.10.0

func (spec *Spec) Tag(tags ...string)

Tag allow you to mark tests in the current and below specification scope with tags. This can be used to provide additional documentation about the nature of the testing scope. This later might be used as well to filter your test in your CI/CD pipeline to build separate testing stages like integration, e2e and so on.

To select or exclude tests with certain tags, you can provide a comma separated list to the following environment variables:

  • TESTCASE_TAG_INCLUDE to filter down to test with a certain tag
  • TESTCASE_TAG_EXCLUDE to exclude certain test from the overall testing scope.

They can be combined as well.

example usage:

TESTCASE_TAG_INCLUDE='E2E' go test ./...
TESTCASE_TAG_EXCLUDE='E2E' go test ./...
TESTCASE_TAG_INCLUDE='E2E' TESTCASE_TAG_EXCLUDE='list,of,excluded,tags' go test ./...
Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Context(`E2E`, func(s *testcase.Spec) {
		// by tagging the spec context, we can filter tests out later in our CI/CD pipeline.
		// A comma separated list can be set with TESTCASE_TAG_INCLUDE env variable to filter down to tests with certain tags.
		// And/Or a comma separated list can be provided with TESTCASE_TAG_EXCLUDE to exclude tests tagged with certain tags.
		s.Tag(`E2E`)

		s.Test(`some E2E test`, func(t *testcase.T) {
			// ...
		})
	})
}
Output:

func (*Spec) Test

func (spec *Spec) Test(desc string, test testCaseBlock)

Test creates a test case block where you receive the fully configured `testcase#T` object. Hook contents that meant to run before the test edge cases will run before the function the Test receives, and hook contents that meant to run after the test edge cases will run after the function is done. After hooks are deferred after the received function block, so even in case of panic, it will still be executed.

It should not contain anything that modify the test subject input. It should focuses only on asserting the result of the subject.

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Test(`my test description`, func(t *testcase.T) {
		// ...
	})
}
Output:

func (*Spec) Then

func (spec *Spec) Then(desc string, test testCaseBlock)

Then is an alias for Test

Example
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	s.Then(`it is expected.... so this is the test description here`, func(t *testcase.T) {
		// ...
	})
}
Output:

func (*Spec) When

func (spec *Spec) When(desc string, testContextBlock func(s *Spec))

When is an alias for testcase#Spec.Context When is used usually to represent `if` based decision reasons about your testing subject.

Example
var t *testing.T
s := testcase.NewSpec(t)

var (
	myType  = func(t *testcase.T) *MyType { return &MyType{} }
	subject = func(t *testcase.T) bool { return myType(t).IsLower(t.I(`input`).(string)) }
)

s.When(`input has upcase letter`, func(s *testcase.Spec) {
	s.LetValue(`input`, `UPPER`)

	s.Then(`it will be false`, func(t *testcase.T) {
		require.False(t, subject(t))
	})
})

s.When(`input is all lowercase letter`, func(s *testcase.Spec) {
	s.LetValue(`input`, `lower`)

	s.Then(`it will be true`, func(t *testcase.T) {
		require.True(t, subject(t))
	})
})
Output:

type T

type T struct {
	testing.TB
	// contains filtered or unexported fields
}

T embeds both testcase vars, and testing#T functionality. This leave place open for extension and but define a stable foundation for the hooks and test edge case function signatures

Works as a drop in replacement for packages where they depend on one of the function of testing#T

func (*T) Defer added in v0.2.1

func (t *T) Defer(fn interface{}, args ...interface{})

Defer function defers the execution of a function until the current test case returns. Deferred functions are guaranteed to run, regardless of panics during the test case execution. Deferred function calls are pushed onto a testcase runtime stack. When an function passed to the Defer function, it will be executed as a deferred call in last-in-first-out order.

It is advised to use this inside a testcase.Spec#Let memorization function when spec variable defined that has finalizer requirements. This allow the specification to ensure the object finalizer requirements to be met, without using an testcase.Spec#After where the memorized function would be executed always, regardless of its actual need.

In a practical example, this means that if you have common vars defined with testcase.Spec#Let memorization, which needs to be Closed for example, after the test case already run. Ensuring such objects Close call in an after block would cause an initialization of the memorized object all the time, even in tests where this is not needed.

e.g.:

  • mock initialization with mock controller, where the mock controller #Finish function must be executed after each test suite.
  • sql.DB / sql.Tx
  • basically anything that has the io.Closer interface
Example
package main

import (
	"database/sql"
	"testing"

	"github.com/stretchr/testify/require"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	const varName = `db for example is something that needs to defer an action after the test run`
	s.Let(varName, func(t *testcase.T) interface{} {
		db, err := sql.Open(`driverName`, `dataSourceName`)

		// asserting error here with the *testcase.T ensure that the test will don't have some spooky failure.
		require.Nil(t, err)

		// db.Close() will be called after the current test case reach the teardown hooks
		t.Defer(db.Close)

		// check if connection is OK
		require.Nil(t, db.Ping())

		// return the verified db instance for the caller
		// this db instance will be memorized during the runtime of the test case
		return db
	})

	s.Test(`a simple test case`, func(t *testcase.T) {
		db := t.I(varName).(*sql.DB)
		require.Nil(t, db.Ping()) // just to do something with it.
	})
}
Output:

Example (WithArgs)
package main

import (
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	const something = `the ExampleDeferTeardownWithArgs value`

	s.Let(something, func(t *testcase.T) interface{} {
		ptr := &ExampleDeferTeardownWithArgs{}
		// T#Defer arguments copied upon pass by value
		// and then passed to the function during the execution of the deferred function call.
		//
		// This is ideal for situations where you need to guarantee that a value cannot be muta
		t.Defer(ptr.SomeTeardownWithArg, `Hello, World!`)
		return ptr
	})

	s.Test(`a simple test case`, func(t *testcase.T) {
		entity := t.I(something).(*ExampleDeferTeardownWithArgs)

		entity.DoSomething()
	})
}

type ExampleDeferTeardownWithArgs struct{}

func (*ExampleDeferTeardownWithArgs) SomeTeardownWithArg(arg string) {}

func (*ExampleDeferTeardownWithArgs) DoSomething() {}
Output:

func (*T) HasTag added in v0.10.2

func (t *T) HasTag(tag string) bool
Example
package main

import (
	"context"
	"database/sql"
	"testing"

	"github.com/stretchr/testify/require"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	var s = testcase.NewSpec(t)

	s.Let(`db`, func(t *testcase.T) interface{} {
		db, err := sql.Open(`driverName`, `dataSourceName`)
		require.Nil(t, err)

		if t.HasTag(`black box`) {
			// tests with black box  use http test server or similar things and high level tx management not maintainable.
			t.Defer(db.Close)
			return db
		}

		tx, err := db.BeginTx(context.Background(), nil)
		require.Nil(t, err)
		t.Defer(tx.Rollback)
		return tx
	})
}
Output:

func (*T) I

func (t *T) I(varName string) interface{}

I will return a testcase variable. it is suggested to use interface casting right after to it, so you can work with concrete types. If there is no such value, then it will panic with a "friendly" message.

func (*T) Let added in v0.2.0

func (t *T) Let(varName string, value interface{})

Let will allow you to define/override a spec runtime bounded variable. The idiom is that if you cannot express the variable declaration with spec level let, or if you need to override in a sub scope a let's content using the previous variable state, or a result of a multi return variable needs to be stored at spec runtime level you can utilize this Let function to achieve this.

Typical use-case to this when you want to have a context.Context, with different values or states, but you don't want to rebuild from scratch at each layer.

Example
package main

import (
	"context"
	"testing"

	"github.com/adamluzsi/testcase"
)

func main() {
	var t *testing.T
	var s = testcase.NewSpec(t)
	s.Parallel()

	s.Let(`ctx`, func(t *testcase.T) interface{} {
		return context.Background()
	})

	s.When(`let can be manipulated during runtime hooks by simply calling *T#Let`, func(s *testcase.Spec) {
		s.Before(func(t *testcase.T) {
			t.Log(`here for example we update the test variable ctx to have a certain value to fulfil the subcontext goal`)
			t.Let(`ctx`, context.WithValue(t.I(`ctx`).(context.Context), `certain`, `value`))
		})

		s.Then(`ctx here has the value that was assigned in the before hook`, func(t *testcase.T) {
			_ = t.I(`ctx`).(context.Context)
		})
	})

	s.Then(`your ctx is in the original state without any modifications`, func(t *testcase.T) {
		_ = t.I(`ctx`).(context.Context)
	})
}
Output:

type Var added in v0.16.0

type Var struct {
	// Name is the test context variable name from where the cached value can be accessed later on.
	// Name is Mandatory when you create a variable, else the empty string will be used as the variable name.
	Name string
	// Init is an optional constructor definition that will be used when Var is bonded to a *Spec without constructor function passed to the Let function.
	// The goal of this field to initialize a variable that can be reused across different testing suites by bounding the Var to a given testing suite.
	//
	// Please use #Get if you wish to access a test runtime across cached variable value.
	// The value returned by this is not subject to any #Before and #Around hook that might mutate the variable value during the test runtime.
	// Init function doesn't cache the value in the test runtime context but literally just meant to initialize a value for the Var in a given test case.
	// Please use it with caution.
	Init letBlock /*[T]*/
}

Var is a test helper structure, that allows easy way to access test runtime variables. In the future it will be updated to use Go2 type parameters.

Var allows creating test variables in a modular way. By modular, imagine that you can have commonly used values initialized and then access it from the test runtime context. This approach allows an easy dependency injection maintenance at project level for your testing suite. It also allows you to have parallel test execution where you don't expect side effect from your subject.

e.g.: HTTP JSON API test and GraphQL test both use the business rule instances.
Or multiple business rules use the same storage dependency.

The last use-case it allows is to define dependencies for your test subject before actually assigning values to it. Then you can focus on building up the testing context and assign values to the variables at the right testing subcontext. With variables, it is easy to forget to assign a value to a variable or forgot to clean up the value of the previous run and then scratch the head during debugging. If you forgot to set a value to the variable in testcase, it warns you that this value is not yet defined to the current testing scope.

Example
var t *testing.T
s := testcase.NewSpec(t)

var (
	resource = testcase.Var{Name: `resource`}
	myType   = s.Let(`myType`, func(t *testcase.T) interface{} {
		return &MyType{MyResource: resource.Get(t).(RoleInterface)}
	})
)

s.Describe(`#MyFunction`, func(s *testcase.Spec) {
	var subject = func(t *testcase.T) {
		// after GO2 this will be replaced with concrete Types instead of interface{}
		myType.Get(t).(*MyType).MyFunc()
	}

	s.When(`resource is xy`, func(s *testcase.Spec) {
		resource.Let(s, func(t *testcase.T) interface{} {
			return MyResourceSupplier{}
		})

		s.Then(`do some test`, func(t *testcase.T) {
			subject(t) // act
			// assertions here.
		})
	})

	// ...
	// other cases with resource xy state change
})
Output:

func (Var) EagerLoading added in v0.16.0

func (v Var) EagerLoading(s *Spec)

EagerLoading allows the variable to be loaded before the action and assertion block is reached. This can be useful when you want to have a variable that cause side effect on your system. Like it should be present in some sort of attached resource/storage.

For example you may persist the value in a storage as part of the initialization block, and then when the test/then block is reached, the entity is already present in the resource.

Example
package main

import (
	"github.com/adamluzsi/testcase"
	"testing"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	value := s.Let(`some value`, func(t *testcase.T) interface{} {
		return 42
	})

	// will be loaded early on, before the test case block reached.
	// This can be useful when you want to have variables,
	// that also must be present in some sort of attached resource,
	// and as part of the constructor, you want to save it.
	// So when the test block is reached, the entity is already present in the resource.
	value.EagerLoading(s)

	s.Test(`some test`, func(t *testcase.T) {
		_ = value.Get(t).(int) // -> 42
		// value returned from cache instead of triggering first time initialization.
	})
}
Output:

func (Var) Get added in v0.16.0

func (v Var) Get(t *T) (T interface{})

Get returns the current cached value of the given Variable When Go2 released, it will replace type casting

Example
package main

import (
	"github.com/adamluzsi/testcase"
	"testing"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	value := s.Let(`some value`, func(t *testcase.T) interface{} {
		return 42
	})

	s.Test(`some test`, func(t *testcase.T) {
		_ = value.Get(t).(int) // -> 42
	})
}
Output:

func (Var) Let added in v0.16.0

func (v Var) Let(s *Spec, blk letBlock)

Let allow you to set the variable value to a given context

Example
package main

import (
	"github.com/adamluzsi/testcase"
	"testing"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	value := testcase.Var{
		Name: `the variable name`,
		Init: func(t *testcase.T) interface{} {
			return 42
		},
	}

	value.Let(s, nil)

	s.Test(`some test`, func(t *testcase.T) {
		_ = value.Get(t).(int) // -> 42
	})
}
Output:

Example (ValueDefinedAtTestingContextScope)
package main

import (
	"github.com/adamluzsi/testcase"
	"testing"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	value := testcase.Var{Name: `the variable name`}

	value.Let(s, func(t *testcase.T) interface{} {
		return 42
	})

	s.Test(`some test`, func(t *testcase.T) {
		_ = value.Get(t).(int) // -> 42
	})
}
Output:

func (Var) LetValue added in v0.16.0

func (v Var) LetValue(s *Spec, T interface{})

LetValue set the value of the variable to a given block

Example
package main

import (
	"github.com/adamluzsi/testcase"
	"testing"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	value := testcase.Var{Name: `the variable name`}

	value.LetValue(s, 42)

	s.Test(`some test`, func(t *testcase.T) {
		_ = value.Get(t).(int) // -> 42
	})
}
Output:

func (Var) Set added in v0.16.0

func (v Var) Set(t *T, T interface{})

Set sets a value to a given variable during test runtime

Example
package main

import (
	"github.com/adamluzsi/testcase"
	"testing"
)

func main() {
	var t *testing.T
	s := testcase.NewSpec(t)

	value := s.Let(`some value`, func(t *testcase.T) interface{} {
		return 42
	})

	s.Before(func(t *testcase.T) {
		value.Set(t, 24)
	})

	s.Test(`some test`, func(t *testcase.T) {
		_ = value.Get(t).(int) // -> 24
	})
}
Output:

type Waiter added in v0.15.0

type Waiter struct {
	WaitDuration time.Duration
	WaitTimeout  time.Duration
}

Waiter can also mean someone/something who waits for a time, event, or opportunity. Waiter provides utility functionalities for waiting related test scenarios. The most common testing use-case to use Waiter when you need to test async operations related outcomes. Due to the nature of Async operations, one might need to wait and assert multiple times the outcome until the system processed a request. By using Waiter for such testing use-cases, the testing should simplify by abstracting away the waiting logic.

func (Waiter) Assert added in v0.15.0

func (w Waiter) Assert(tb testing.TB, assertionBlock func(testing.TB))

Assert will attempt to assert with the assertion function block that expectations are met. In case expectations are failed, it will wait and attempt again to assert that the expectations are met. It behaves the same as WaitWhile, and if the wait timeout reached, the last failed assertion results would be published to the received testing.TB. Calling multiple times the assertion function block should be a safe operation.

Example
package main

import (
	"math/rand"
	"testing"
	"time"

	"github.com/adamluzsi/testcase"
)

func main() {
	w := testcase.Waiter{
		WaitDuration: time.Millisecond,
		WaitTimeout:  time.Second,
	}

	var t *testing.T
	// will attempt to wait until assertion block passes without a failing test result.
	// The maximum time it is willing to wait is equal to the wait timeout duration.
	// If the wait timeout reached, and there was no passing assertion run,
	// the last failed assertion history is replied to the received testing.TB
	//   In this case the failure would be replied to the *testing.T.
	w.Assert(t, func(tb testing.TB) {
		if rand.Intn(1) == 0 {
			tb.Fatal(`boom`)
		}
	})
}
Output:

func (Waiter) Wait added in v0.15.0

func (w Waiter) Wait()

Wait will attempt to wait a bit and leave breathing space for other goroutines to steal processing time. It will also attempt to schedule other goroutines.

Example
package main

import (
	"time"

	"github.com/adamluzsi/testcase"
)

func main() {
	w := testcase.Waiter{
		WaitDuration: time.Millisecond,
	}

	w.Wait() // will wait 1 millisecond and attempt to schedule other go routines
}
Output:

func (Waiter) WaitWhile added in v0.15.0

func (w Waiter) WaitWhile(condition func() bool)

WaitWhile will wait until a condition met, or until the wait timeout. By default, if the timeout is not defined, it just attempts to execute the condition once. Calling multiple times the condition function should be a safe operation.

Example
package main

import (
	"math/rand"
	"time"

	"github.com/adamluzsi/testcase"
)

func main() {
	w := testcase.Waiter{
		WaitDuration: time.Millisecond,
		WaitTimeout:  time.Second,
	}

	// will attempt to wait until condition returns false.
	// The maximum time it is willing to wait is equal to the wait timeout duration.
	w.WaitWhile(func() bool {
		return rand.Intn(1) == 0
	})
}
Output:

Directories

Path Synopsis
docs

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL