< Previous
Next >
Suppose an array of length n
sorted in ascending order is rotated between 1
and n
times. For example, the array nums = [0,1,2,4,5,6,7]
might become:
[4,5,6,7,0,1,2]
if it was rotated 4
times.
[0,1,2,4,5,6,7]
if it was rotated 7
times.
Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]]
1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
.
Given the sorted rotated array nums
of unique elements, return the minimum element of this array.
Example 1:
Input: nums = [3,4,5,1,2]
Output: 1
Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Example 2:
Input: nums = [4,5,6,7,0,1,2]
Output: 0
Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.
Example 3:
Input: nums = [11,13,15,17]
Output: 11
Explanation: The original array was [11,13,15,17] and it was rotated 4 times.
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
- All the integers of
nums
are unique.
nums
is sorted and rotated between 1
and n
times.
[Array]
[Binary Search]
Similar Questions
- Search in Rotated Sorted Array (Medium)
- Find Minimum in Rotated Sorted Array II (Hard)
Hints
Hint 1
Array was originally in ascending order. Now that the array is rotated, there would be a point in the array where there is a small deflection from the increasing sequence. eg. The array would be something like [4, 5, 6, 7, 0, 1, 2].
Hint 2
You can divide the search space into two and see which direction to go.
Can you think of an algorithm which has O(logN) search complexity?
Hint 3
- All the elements to the left of inflection point > first element of the array.
- All the elements to the right of inflection point < first element of the array.