package module
Version: v0.9.13 Latest Latest

This package is not in the latest version of its module.

Go to latest
Published: Dec 12, 2019 License: BSD-3-Clause Imports: 27 Imported by: 0


ALLHIC: Genome scaffolding based on Hi-C data

     _       _____     _____     ____  ____  _____   ______
    / \     |_   _|   |_   _|   |_   ||   _||_   _|.' ___  |
   / _ \      | |       | |       | |__| |    | | / .'   \_|
  / ___ \     | |   _   | |   _   |  __  |    | | | |
_/ /   \ \_  _| |__/ | _| |__/ | _| |  | |_  _| |_\ `.___.'\
|____| |____||________||________||____||____||_____|`.____ .'


Authors Haibao Tang (tanghaibao)
Xingtan Zhang (tangerzhang)
License BSD


We currently recommend only using this program in a scripted pipeline, as detailed here.

ALLHiC can be used to scaffold genomic contigs based on Hi-C data, which is particularly effectively for auto-polyploid or heterozygous diploid genomes.


The easiest way to install allhic is to download the latest binary from the releases and make sure to chmod +x the resulting binary.

If you are using go, you can build from source with:

go get -u -t -v
go install



Extract does a fair amount of preprocessing: 1) extract inter-contig links into a more compact form, specifically into .clm; 2) extract intra-contig links and build a distribution; 3) count up the restriction sites to be used in normalization (similar to LACHESIS); 4) bundles the inter-contig links into pairs of contigs.

allhic extract tests/test.bam tests/seq.fasta.gz

This prune step is optional for typical inbreeding diploid genomes. However, pruning will improve the quality of assembly of polyploid genomes. Prune pairs file to remove allelic/cross-allelic links.

allhic prune tests/Allele.ctg.table tests/test.pairs.txt

Please see help string of allhic prune on the formatting of Allele.ctg.table.


Given a target k, number of partitions, the goal of the partitioning is to separate all the contigs into separate clusters. As with all clustering algorithm, there is an optimization goal here. The LACHESIS algorithm is a hierarchical clustering algorithm using average links, which is the same method used by ALLHIC.

networkbefore networkafter

allhic partition tests/test.counts_GATC.txt tests/test.pairs.txt

Critically, if you have applied the pruning step above, use the "pruned" pairs:

allhic partition tests/test.counts_GATC.txt tests/test.pairs.prune.txt

Given a set of Hi-C contacts between contigs, as specified in the clmfile, reconstruct the highest scoring ordering and orientations for these contigs.

Optimize uses Genetic Algorithm (GA) to search for the best scoring solution. GA has been successfully applied to genome scaffolding tasks in the past (see ALLMAPS; Tang et al. Genome Biology, 2015).


allhic optimize tests/test.counts_GATC.2g1.txt tests/test.clm
allhic optimize tests/test.counts_GATC.2g2.txt tests/test.clm

Build genome release, including .agp and .fasta output.

allhic build tests/test.counts_GATC.2g?.tour tests/seq.fasta.gz tests/asm-2g.chr.fasta

Use d3.js to visualize the heatmap.

allhic plot tests/test.bam tests/test.counts_GATC.2g1.tour



Please see detailed steps in a scripted pipeline here.

WIP features

  • Add partition split inside "partition"
  • Use clustering when k = 1
  • Isolate matrix generation to "plot"
  • Add "pipeline" to simplify execution
  • Make "build" to merge subgroup tours
  • Provide better error messages for "file not found"
  • Plot the boundary of the contigs in "plot" using genome.json
  • Add dot plot to "plot"
  • Compare numerical output with Lachesis
  • Improve Ler0 results
  • Translate "prune" from C++ code to golang
  • Add test suites


Xingtan Zhang, Shengcheng Zhang, Qian Zhao, Ray Ming & Haibao Tang. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. (2019) Nature Plants. link




View Source
const (
	// LineWidth specifies how many bases to show per line
	LineWidth = 60
	// LargeSequence will notify the writer to send a notification
	LargeSequence = 1000000
View Source
const (
	// Version is the current version of ALLHIC
	Version = "0.9.13"
	// LB is lower bound for GoldenArray
	LB = 18
	// UB is upper bound for GoldenArray
	UB = 29
	// BB is span for GoldenArray
	BB = UB - LB + 1
	// PHI is natural log of golden ratio
	PHI = 0.4812118250596684 // math.Log(1.61803398875)
	// GRLB is the min item in GR
	GRLB = 5778
	// GRUB is the max item in GR
	GRUB = 1149851
	// OUTLIERTHRESHOLD is how many deviation from MAD
	// MINSIZE is the minimum size cutoff for tig to be considered
	MINSIZE = 10000
	// GeometricBinSize is the max/min ratio for each bin
	GeometricBinSize = 1.0442737824274138403219664787399
	// MinLinkDist is the minimum link distance we care about
	MinLinkDist = 1 << 11

	/* extract */
	// DefaultRE is the default restriction site used
	DefaultRE = "GATC"
	// MinLinks is the minimum number of links between contig pair to consider
	MinLinks = 3

	// MaxLinkDist is the maximum link distance we care about
	MaxLinkDist = 1 << 27
	// BigNorm is a big integer multiplier so we don't have to mess with float64
	BigNorm = int64(1000000000000)
	// EPS is that Q must be larger than this value, used in cluster.go
	EPS = 1e-5
	// MinAvgLinkage is the minimum cutoff for merging clusters
	MinAvgLinkage = 0
	// LinkDist specifies to maximum size of the links going over a certain position
	LinkDist = int64(1000000)

	/* optimize */
	// Seed is the random seed
	Seed = 42
	// Npop is the population size used in GA
	Npop = 100
	// Ngen is the number of generations for convergence
	Ngen = 5000
	// MutaProb is the mutation probability in GA
	MutaProb = 0.2

	// *** The following parameters are modeled after LACHESIS ***
	// MinREs is the minimum number of RE sites in a contig to be clustered (CLUSTER_MIN_RE_SITES)
	MinREs = 10

	// MaxLinkDensity is the density threshold before marking a contig as 'repetitve' (CLUSTER_MAX_LINK_DENSITY)
	MaxLinkDensity = 2
	// NonInformativeRatio is the cutoff for recovering skipped contigs back into the clusters (CLUSTER_NONINFORMATIVE_RATIO)
	NonInformativeRatio = 3

	// REHeader is the first line in the RE counts file
	REHeader = "#Contig\tRECounts\tLength\n"

	// PairsFileHeader is the first line in the pairs.txt file
	PairsFileHeader = "#X\tY\tContig1\tContig2\tRE1\tRE2\tObservedLinks\tExpectedLinksIfAdjacent\tLabel\n"

	// DistributionHeader is the first line in the distribution.txt file
	DistributionHeader = "#Bin\tBinStart\tBinSize\tNumLinks\tTotalSize\tLinkDensity\n"

	// PostProbHeader is the first line in the postprob file
	PostProbHeader = "#SeqID\tStart\tEnd\tContig\tPostProb\n"
View Source

ACCEPT tag show to accept orientation flip

View Source
const LIMIT = 10000000

LIMIT determines the largest distance for two tigs to add to total score

View Source

REJECT tag show to reject orientation flip


View Source
var Backend = logging.NewLogBackend(os.Stderr, "", 0)

Backend is the default stderr output

View Source
var BackendFormatter = logging.NewBackendFormatter(Backend, format)

BackendFormatter contains the fancy debug formatter

View Source
var GR = [...]int{5778, 9349, 15127, 24476,
	39603, 64079, 103682, 167761,
	271443, 439204, 710647, 1149851}

GR is a precomputed list of exponents of golden ratio phi

View Source
var LimitLog = math.Log(LIMIT)

LimitLog is the Log of LIMIT


func CountPattern added in v0.9.12

func CountPattern(seq []byte, pattern Pattern) int

CountPattern count how many times a pattern occurs in seq

func ErrorAbort added in v0.8.12

func ErrorAbort(err error)

ErrorAbort logs an error message and then exit with retcode of 1

func Execute added in v0.9.13

func Execute() error

Execute executes the root command.

func HmeanInt

func HmeanInt(a []int, amin, amax int) float64

HmeanInt returns the harmonic mean That is: n / (1/x1 + 1/x2 + ... + 1/xn)

func IsNewerFile added in v0.8.4

func IsNewerFile(a, b string) bool

IsNewerFile checks if file a is newer than file b

func L50 added in v0.8.4

func L50(lengths []int64) int64

L50 returns the sequence length L where half of the genome is covered in contigs of length >= L50

func Make2DGArraySlice

func Make2DGArraySlice(m, n int) [][]GArray

Make2DGArraySlice allocates a 2D matrix with shape (m, n)

func Make2DSlice

func Make2DSlice(m, n int) [][]int

Make2DSlice allocates a 2D matrix with shape (m, n)

func Make2DSliceFloat64 added in v0.8.4

func Make2DSliceFloat64(m, n int) [][]float64

Make2DSliceFloat64 allocates a 2D float64 matrix with shape (m, n)

func Make2DSliceInt64 added in v0.8.4

func Make2DSliceInt64(m, n int) [][]int64

Make2DSliceInt64 allocates a 2D int64 matrix with shape (m, n)

func Make3DSlice

func Make3DSlice(m, n, o int) [][][]int

Make3DSlice allocates a 3D matrix with shape (m, n, o)

func MutInsertion

func MutInsertion(genome eaopt.Slice, rng *rand.Rand)

MutInsertion applies insertion operation on the genome

func MutInversion

func MutInversion(genome eaopt.Slice, rng *rand.Rand)

MutInversion applies inversion operation on the genome

func MutPermute added in v0.8.4

func MutPermute(genome eaopt.Slice, rng *rand.Rand)

MutPermute permutes two genes at random n times

func MutSplice added in v0.8.4

func MutSplice(genome eaopt.Slice, rng *rand.Rand)

MutSplice splits a genome in 2 and glues the pieces back together in reverse order

func OutlierCutoff

func OutlierCutoff(a []float64) (float64, float64)

OutlierCutoff implements Iglewicz and Hoaglin's robust, returns the cutoff values - lower bound and upper bound.

func Percentage added in v0.8.4

func Percentage(a, b int) string

Percentage prints a human readable message of the percentage

func ReadCSVLines added in v0.8.4

func ReadCSVLines(filename string) [][]string

ReadCSVLines parses all the csv lines into 2D array of tokens

func RemoveExt

func RemoveExt(filename string) string

RemoveExt returns the substring minus the extension

func Reverse added in v0.8.4

func Reverse(s []int)

Reverse returns a slice in place

func Round

func Round(input float64) float64

Round makes a round number

func SumLog added in v0.8.4

func SumLog(a []int) float64

SumLog returns the kernel of sum of log likelihood


type AGP added in v0.8.4

type AGP struct {
	// contains filtered or unexported fields

AGP is a collection of AGPLines

func NewAGP added in v0.8.4

func NewAGP(agpfile string) *AGP

NewAGP is the constructor for AGP

func (*AGP) Add added in v0.8.4

func (r *AGP) Add(row string)

Add adds an AGPLine to the collection

type AGPLine added in v0.8.4

type AGPLine struct {
	// contains filtered or unexported fields

AGPLine is a line in the AGP file

type AlleleGroup added in v0.8.12

type AlleleGroup []string

AlleleGroup stores the contig names that are considered allelic

type Alleler added in v0.9.8

type Alleler struct {
	PafFile  string       // ex. "genome.paf"
	ReFile   string       // ex. "genome.counts_GATC.txt"
	Paf      PAFFile      // The PAF data
	ReCounts RECountsFile // The RE data

Alleler is responsible for building the allele table

func (*Alleler) Run added in v0.9.8

func (r *Alleler) Run()

Run kicks off the Alleler

type Anchorer added in v0.8.4

type Anchorer struct {
	Bamfile  string
	Tourfile string
	// contains filtered or unexported fields

Anchorer runs the merging algorithm

func (r *Anchorer) ExtractInterContigLinks()

ExtractInterContigLinks extracts links from the Bamfile

func (*Anchorer) Run added in v0.8.4

func (r *Anchorer) Run()

Run kicks off the merging algorithm

type AnchorerJSON added in v0.8.4

type AnchorerJSON struct {
	Starts        map[string]int64 `json:"starts"`
	Sizes         map[string]int64 `json:"sizes"`
	TotalBins     int              `json:"total_bins"`
	DistBinStarts []int64          `json:"distbinstarts"`
	DistBinSizes  []int64          `json:"distbinsizes"`
	Resolution    int64            `json:"resolution"`

AnchorerJSON keeps a succinct subset of all fields in Anchorer

type Assesser added in v0.8.4

type Assesser struct {
	Bamfile string
	Bedfile string
	Seqid   string
	// contains filtered or unexported fields

Assesser takes input of bamfile and bedfile and output per contig confidence in the orientation

Summary of algorithm: Step 1. Take all intra-contig links and build the background distribution Step 2. Loop through each contig, compute the likelihood of all links coming

out of the contig, assuming + orientation, and - orientation, separately

Step 3. Normalize the likelihood to get the posterior probability (implicit assumption)

of equal prior probability for each contig

func (*Assesser) Run added in v0.8.4

func (r *Assesser) Run()

Run calls the Assessor

type BedLine added in v0.8.4

type BedLine struct {
	// contains filtered or unexported fields

BedLine stores the information from each line in the bedfile

type Builder added in v0.8.4

type Builder struct {
	Tourfiles []string
	Fastafile string
	// Output file
	OutAGPfile   string
	OutFastafile string

Builder reconstructs the genome release AGP and FASTA files

func (*Builder) Run added in v0.8.4

func (r *Builder) Run()

Run kicks off the Build and constructs molecule using component FASTA sequence

type CLM added in v0.8.4

type CLM struct {
	REfile  string
	Clmfile string
	Tigs    []*TigF
	Tour    Tour
	Signs   []byte
	// contains filtered or unexported fields

CLM has the following format:

tig00046211+ tig00063795+ 1 53173 tig00046211+ tig00063795- 1 116050 tig00046211- tig00063795+ 1 71155 tig00046211- tig00063795- 1 134032 tig00030676+ tig00077819+ 7 136407 87625 87625 106905 102218 169660 169660 tig00030676+ tig00077819- 7 126178 152952 152952 35680 118923 98367 98367 tig00030676- tig00077819+ 7 118651 91877 91877 209149 125906 146462 146462 tig00030676- tig00077819- 7 108422 157204 157204 137924 142611 75169 75169

func NewCLM added in v0.8.4

func NewCLM(Clmfile, REfile string) *CLM

NewCLM is the constructor for CLM

func (*CLM) Activate added in v0.8.4

func (r *CLM) Activate(shuffle bool, rng *rand.Rand)

Activate selects active contigs in the current partition. This is the setup phase of the algorithm, and supports two modes:

  • "de novo": This is useful at the start of a new run where no tours are available. We select the strong contigs that have significant number of links to other contigs in the partition. We build a histogram of link density (# links per bp) and remove the contigs that appear to be outliers. The orientations are derived from the matrix decomposition of the pairwise strandedness matrix O.
  • "hotstart": This is useful when there was a past run, with a given tourfile. In this case, the active contig list and orientations are derived from the last tour in the file.

func (*CLM) EvaluateQ added in v0.8.4

func (r *CLM) EvaluateQ() float64

EvaluateQ sums up all distance is defined as the sizes of interleaving contigs plus the actual link distances. Maximize Sum(1 / distance) for all links. For performance consideration, we actually use a histogram to approximate all link distances. See goldenArray() for details.

func (*CLM) GARun added in v0.8.4

func (r *CLM) GARun(fwtour *os.File, opt *Optimizer, phase int) Tour

GARun set up the Genetic Algorithm and run it

func (*CLM) M added in v0.8.4

func (r *CLM) M() [][]int

M yields a contact frequency matrix, where each cell contains how many links between i-th and j-th contig

func (*CLM) O added in v0.8.4

func (r *CLM) O() *mat64.SymDense

O yields a pairwise orientation matrix, where each cell contains the strandedness times the number of links between i-th and j-th contig

func (*CLM) OptimizeOrdering added in v0.8.4

func (r *CLM) OptimizeOrdering(fwtour *os.File, opt *Optimizer, phase int)

OptimizeOrdering changes the ordering of contigs by Genetic Algorithm

func (*CLM) OptimizeOrientations added in v0.8.4

func (r *CLM) OptimizeOrientations(fwtour *os.File, phase int) (string, string)

OptimizeOrientations changes the orientations of contigs by using heuristic flipping algorithms.

func (*CLM) Q added in v0.8.4

func (r *CLM) Q() [][]GArray

Q yields a contact frequency matrix when contigs are already oriented. This is a similar matrix as M, but rather than having the number of links in the cell, it points to an array that has the actual distances.

type CLMLine added in v0.8.4

type CLMLine struct {
	// contains filtered or unexported fields

CLMLine stores the data structure of the CLM file

type Clusters added in v0.8.4

type Clusters map[int][]int

Clusters stores all the contig IDs per cluster

type Contact

type Contact struct {
	// contains filtered or unexported fields

Contact stores how many links between two contigs

type Contig added in v0.8.4

type Contig struct {
	// contains filtered or unexported fields

Contig stores the name and length of each contig

type ContigAB added in v0.9.8

type ContigAB [2]string

ContigAB is used to get a pair of contigs

type ContigInfo added in v0.8.4

type ContigInfo struct {
	// contains filtered or unexported fields

ContigInfo stores results calculated from f

func (ContigInfo) String added in v0.8.4

func (r ContigInfo) String() string

String outputs the string representation of ContigInfo

type ContigPair added in v0.8.4

type ContigPair struct {
	RE1, RE2 int
	L1, L2   int
	// contains filtered or unexported fields

ContigPair stores results calculated from findDistanceBetweenContigs

func (ContigPair) String added in v0.8.4

func (r ContigPair) String() string

String outputs the string representation of ContigInfo

type CtgAlleleGroupPair added in v0.8.12

type CtgAlleleGroupPair struct {
	// contains filtered or unexported fields

CtgAlleleGroupPair stores a pair of the contig and the alleleGroup it resides in

type Edge added in v0.8.4

type Edge struct {
	// contains filtered or unexported fields

Edge is between two nodes in a graph

type Extracter added in v0.8.4

type Extracter struct {
	Bamfile   string
	Fastafile string
	RE        string
	MinLinks  int

	// Output file
	OutContigsfile string
	OutPairsfile   string
	OutClmfile     string
	// contains filtered or unexported fields

Extracter processes the distribution step

func (*Extracter) Run added in v0.8.4

func (r *Extracter) Run()

Run calls the distribution steps

type GArray

type GArray [BB]int

GArray contains golden array of size BB

func GoldenArray

func GoldenArray(a []int) (counts GArray)

GoldenArray is given list of ints, we aggregate similar values so that it becomes an array of multiples of phi, where phi is the golden ratio.

phi ^ 18 = 5778 phi ^ 29 = 1149851

So the array of counts go between 843 to 788196. One triva is that the exponents of phi gets closer to integers as N grows. See interesting discussion here: <>

type Graph added in v0.8.4

type Graph map[*Node]map[*Node]int64

Graph is an adjacency list

type Link struct {
	// contains filtered or unexported fields

Link contains a specific inter-contig link

type LinkDensityModel added in v0.8.4

type LinkDensityModel struct {
	A, B float64
	// contains filtered or unexported fields

LinkDensityModel is a power-law model Y = A * X ^ B, stores co-efficients this density than needs to multiply C - X to make it a probability distribution where C is chromosome length

func NewLinkDensityModel added in v0.8.4

func NewLinkDensityModel() *LinkDensityModel

NewLinkDensityModel makes an empty link distribution ready to be filled in

func (*LinkDensityModel) BinSize added in v0.8.4

func (r *LinkDensityModel) BinSize(i int) int

BinSize returns the size of each bin

type Node added in v0.8.4

type Node struct {
	// contains filtered or unexported fields

Node is the scaffold ends, Left or Right (5` or 3`)

type OO added in v0.8.4

type OO struct {
	// contains filtered or unexported fields

OO describes a scaffolding experiment and contains an array of OOLine

func (*OO) Add added in v0.8.4

func (r *OO) Add(scaffold, ctg string, ctgsize int, strand byte)

Add instantiates a new OOLine object and add to the array in OO

func (*OO) ParseAllTours added in v0.8.4

func (r *OO) ParseAllTours(tourfile string)

ParseAllTours reads tour from file

A tour file has the following format: > name contig1+ contig2- contig3?

type OOLine added in v0.8.4

type OOLine struct {
	// contains filtered or unexported fields

OOLine describes a simple contig entry in a scaffolding experiment

type Optimizer

type Optimizer struct {
	REfile    string
	Clmfile   string
	RunGA     bool
	Resume    bool
	Seed      int64
	NPop      int
	NGen      int
	MutProb   float64
	CrossProb float64

	// Output files
	OutTourFile string
	// contains filtered or unexported fields

Optimizer runs the order-and-orientation procedure, given a clmfile

func (*Optimizer) Run

func (r *Optimizer) Run()

Run kicks off the Optimizer

type OrientedPair

type OrientedPair struct {
	// contains filtered or unexported fields

OrientedPair contains two contigs and their orientations

type PAFFile added in v0.9.8

type PAFFile struct {
	PafFile string      // File path of the paf
	Records []PAFRecord // List of PAF records

PAFFile parses the PAF file into a set of records

func (*PAFFile) ParseRecords added in v0.9.8

func (r *PAFFile) ParseRecords()

ParseRecords collects all records in memory

type PAFRecord added in v0.9.8

type PAFRecord struct {
	Query           string         // Query sequence name
	QueryLength     int            // Query sequence length
	QueryStart      int            // Query start (0-based)
	QueryEnd        int            // Query end (0-based)
	RelativeStrand  byte           // `+' if query and target on the same strand; `-' if opposite
	Target          string         // Target sequence name
	TargetLength    int            // Target sequence length
	TargetStart     int            // Target start on original strand (0-based)
	TargetEnd       int            // Target end on original strand (0-based)
	NumMatches      int            // Number of matching bases in the mapping
	AlignmentLength int            // Number bases, including gaps, in the mapping
	MappingQuality  uint8          // Mapping quality (0-255 with 255 for missing)
	Tags            map[string]Tag // Tags, e.g. tp, cm etc.

PAFRecord holds one line in the PAF file The file spec:

type Pair

type Pair struct {
	// contains filtered or unexported fields

Pair contains two contigs in contact

type Partitioner

type Partitioner struct {
	Contigsfile string
	PairsFile   string
	K           int

	// Output files
	OutREfiles []string
	// Parameters
	MinREs              int
	MaxLinkDensity      int
	NonInformativeRatio int
	// contains filtered or unexported fields

Partitioner converts the bamfile into a matrix of link counts

func (*Partitioner) Cluster added in v0.8.4

func (r *Partitioner) Cluster()

Cluster performs the hierarchical clustering This function is a re-implementation of the AHClustering() function in LACHESIS

func (*Partitioner) Run

func (r *Partitioner) Run()

Run is the main function body of partition

type Path added in v0.8.4

type Path struct {
	LNode, RNode *Node // Two nodes at each end
	// contains filtered or unexported fields

Path is a collection of ordered contigs

func (*Path) String added in v0.8.4

func (r *Path) String() string

String prints the Path nicely

type PathSet added in v0.8.4

type PathSet map[*Path]bool

PathSet stores the set of paths

type Pattern added in v0.9.12

type Pattern struct {
	// contains filtered or unexported fields

Pattern is a string pattern that is either simple or a regex

func MakePattern added in v0.9.12

func MakePattern(s string) Pattern

MakePattern builds a regex-aware pattern that could be passed around and counted Multiple patterns will be split at comma (,) and N is converted to [ACGT]

type Piler added in v0.8.4

type Piler struct {
	BS, BE []int64

Piler has the data structures to support overlap counts Here we use a data structure described in: We store the starts and ends of links in sorted arrays The `icount` algorithm then search an interval (or in this case) point query into these sorted interval ends

type Plotter added in v0.8.4

type Plotter struct {
	Anchor *Anchorer

Plotter extracts a matrix of link counts and plot a heatmp

func (*Plotter) Run added in v0.8.4

func (r *Plotter) Run()

Run starts the plotting

type Pruner added in v0.8.4

type Pruner struct {
	AllelesFile string
	PairsFile   string
	// contains filtered or unexported fields

Pruner processes the pruning step

func (*Pruner) Run added in v0.8.4

func (r *Pruner) Run()

Run calls the pruning steps The pruning algorithm is a heuristic method that removes the following pairs:

  1. Allelic, these are directly the pairs of allelic contigs given in the allele table
  2. Cross-allelic, these are any contigs that connect to the allelic contigs so we only keep the best contig pair

Pruned edges are then annotated as allelic/cross-allelic/ok

type RECountsFile added in v0.9.8

type RECountsFile struct {
	Filename string           // File path
	Records  []RECountsRecord // List of records

RECountsFile holds a list of RECountsRecord

func (*RECountsFile) ParseRecords added in v0.9.8

func (r *RECountsFile) ParseRecords()

ParseRecords reads a list of records from REFile

type RECountsRecord added in v0.9.8

type RECountsRecord struct {
	Contig   string // Name of the contig
	RECounts int    // Number of restriction sites
	Length   int    // Length of the contig, in base pairs

RECountsRecord contains a line in the RE file

type Range added in v0.8.4

type Range struct {
	// contains filtered or unexported fields

Range tracks contig:start-end

type SparseMatrix added in v0.8.4

type SparseMatrix []map[int]int

SparseMatrix stores a big square matrix that is sparse

type Tag added in v0.9.8

type Tag = interface{}

Tag represents the additional info in the 12+ columns in the PAF file. The type of the tag is dynamically determined

See also:

The following tags are supported Tag Type Description _ tp A Type of aln: P/primary, S/secondary and I,i/inversion cm i Number of minimizers on the chain s1 i Chaining score s2 i Chaining score of the best secondary chain NM i Total number of mismatches and gaps in the alignment MD Z To generate the ref sequence in the alignment AS i DP alignment score ms i DP score of the max scoring segment in the alignment nn i Number of ambiguous bases in the alignment ts A Transcript strand (splice mode only) cg Z CIGAR string (only in PAF) cs Z Difference string dv f Approximate per-base sequence divergence de f Gap-compressed per-base sequence divergence rl i Length of query regions harboring repetitive seeds

type Tig

type Tig struct {
	Idx  int
	Size int

Tig removes some unnessary entries in the TigF

type TigF

type TigF struct {
	Idx      int
	Name     string
	Size     int
	IsActive bool

TigF stores the index to activeTigs and size of the tig

type Tour

type Tour struct {
	Tigs []Tig
	M    [][]int

Tour stores a number of tigs along with 2D matrices for evaluation

func (Tour) Append

func (r Tour) Append(q eaopt.Slice) eaopt.Slice

Append method from Slice

func (Tour) At

func (r Tour) At(i int) interface{}

At method from Slice

func (Tour) Clone

func (r Tour) Clone() eaopt.Genome

Clone a Tour

func (Tour) Copy

func (r Tour) Copy() eaopt.Slice

Copy method from Slice

func (Tour) Crossover

func (r Tour) Crossover(q eaopt.Genome, rng *rand.Rand)

Crossover a Tour with another Tour by using Partially Mixed Crossover (PMX).

func (Tour) Evaluate

func (r Tour) Evaluate() (float64, error)

Evaluate calculates a score for the current tour

func (Tour) EvaluateSumLog added in v0.8.12

func (r Tour) EvaluateSumLog() (float64, error)

EvaluateSumLog calculates a score for the current tour

func (Tour) Len

func (r Tour) Len() int

Len method from Slice

func (Tour) Mutate

func (r Tour) Mutate(rng *rand.Rand)

Mutate a Tour by applying by inversion or insertion

func (Tour) Replace

func (r Tour) Replace(q eaopt.Slice)

Replace method from Slice

func (Tour) Set

func (r Tour) Set(i int, v interface{})

Set method from Slice

func (Tour) Shuffle

func (r Tour) Shuffle(rng *rand.Rand)

Shuffle randomly shuffles an integer array using Knuth or Fisher-Yates

func (Tour) Slice

func (r Tour) Slice(a, b int) eaopt.Slice

Slice method from Slice

func (Tour) Split

func (r Tour) Split(k int) (eaopt.Slice, eaopt.Slice)

Split method from Slice

func (Tour) Swap

func (r Tour) Swap(i, j int)

Swap method from Slice


Path Synopsis

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL