sops

package module
Version: v0.0.0-...-14a22d7 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 12, 2019 License: MPL-2.0 Imports: 19 Imported by: 7

README

SOPS: Secrets OPerationS
========================

**sops** is an editor of encrypted files that supports YAML, JSON, ENV, INI and BINARY
formats and encrypts with AWS KMS, GCP KMS, Azure Key Vault and PGP.
(`demo <https://www.youtube.com/watch?v=YTEVyLXFiq0>`_)

.. image:: https://i.imgur.com/X0TM5NI.gif

------------

.. image:: https://godoc.org/go.mozilla.org/sops?status.svg
	:target: https://godoc.org/go.mozilla.org/sops

.. image:: https://travis-ci.org/mozilla/sops.svg?branch=master
	:target: https://travis-ci.org/mozilla/sops

Download
--------

Stable release
~~~~~~~~~~~~~~
Binaries and packages of the latest stable release are available at `https://github.com/mozilla/sops/releases <https://github.com/mozilla/sops/releases>`_.

Development branch
~~~~~~~~~~~~~~~~~~
For the adventurous, unstable features are available in the `develop` branch, which you can install from source:

.. code:: bash

	$ go get -u go.mozilla.org/sops/cmd/sops
        $ cd $GOPATH/src/go.mozilla.org/sops/
        $ git checkout develop
        $ make install

(requires Go >= 1.12)

If you don't have Go installed, set it up with:

.. code:: bash

	$ {apt,yum,brew} install golang
	$ echo 'export GOPATH=~/go' >> ~/.bashrc
	$ source ~/.bashrc
	$ mkdir $GOPATH

Or whatever variation of the above fits your system and shell.

To use **sops** as a library, take a look at the `decrypt package <https://godoc.org/go.mozilla.org/sops/decrypt>`_.

**Questions?** ping "ulfr" and "autrilla" in ``#security`` on `irc.mozilla.org <https://wiki.mozilla.org/IRC>`_
(use a web client like `mibbit <https://chat.mibbit.com>`_ ).

**What happened to Python Sops?** We rewrote Sops in Go to solve a number of
deployment issues, but the Python branch still exists under ``python-sops``. We
will keep maintaining it for a while, and you can still ``pip install sops``,
but we strongly recommend you use the Go version instead.

.. sectnum::
.. contents:: Table of Contents

Usage
-----

For a quick presentation of Sops, check out this Youtube tutorial:

.. image:: https://img.youtube.com/vi/V2PRhxphH2w/0.jpg
   :target: https://www.youtube.com/watch?v=V2PRhxphH2w
   
If you're using AWS KMS, create one or multiple master keys in the IAM console
and export them, comma separated, in the **SOPS_KMS_ARN** env variable. It is
recommended to use at least two master keys in different regions.

.. code:: bash

	export SOPS_KMS_ARN="arn:aws:kms:us-east-1:656532927350:key/920aff2e-c5f1-4040-943a-047fa387b27e,arn:aws:kms:ap-southeast-1:656532927350:key/9006a8aa-0fa6-4c14-930e-a2dfb916de1d"

Your AWS credentials must be present in ``~/.aws/credentials``. sops uses aws-sdk-go.

.. code::

	$ cat ~/.aws/credentials
	[default]
	aws_access_key_id = AKI.....
	aws_secret_access_key = mw......

If you want to use PGP, export the fingerprints of the public keys, comma
separated, in the **SOPS_PGP_FP** env variable.

.. code:: bash

	export SOPS_PGP_FP="85D77543B3D624B63CEA9E6DBC17301B491B3F21,E60892BB9BD89A69F759A1A0A3D652173B763E8F"

Note: you can use both PGP and KMS simultaneously.

Then simply call ``sops`` with a file path as argument. It will handle the
encryption/decryption transparently and open the cleartext file in an editor

.. code:: shell

	$ sops mynewtestfile.yaml
	mynewtestfile.yaml doesn't exist, creating it.
	please wait while an encryption key is being generated and stored in a secure fashion
	file written to mynewtestfile.yaml

Editing will happen in whatever ``$EDITOR`` is set to, or, if it's not set, in vim.
Keep in mind that sops will wait for the editor to exit, and then try to reencrypt
the file. Some GUI editors (atom, sublime) spawn a child process and then exit
immediately. They usually have an option to wait for the main editor window to be
closed before exiting. See `#127 <https://github.com/mozilla/sops/issues/127>`_ for
more information.

The resulting encrypted file looks like this:

.. code:: yaml

    myapp1: ENC[AES256_GCM,data:Tr7o=,iv:1=,aad:No=,tag:k=]
    app2:
        db:
            user: ENC[AES256_GCM,data:CwE4O1s=,iv:2k=,aad:o=,tag:w==]
            password: ENC[AES256_GCM,data:p673w==,iv:YY=,aad:UQ=,tag:A=]
        # private key for secret operations in app2
        key: |-
            ENC[AES256_GCM,data:Ea3kL5O5U8=,iv:DM=,aad:FKA=,tag:EA==]
    an_array:
    - ENC[AES256_GCM,data:v8jQ=,iv:HBE=,aad:21c=,tag:gA==]
    - ENC[AES256_GCM,data:X10=,iv:o8=,aad:CQ=,tag:Hw==]
    - ENC[AES256_GCM,data:KN=,iv:160=,aad:fI4=,tag:tNw==]
    sops:
        kms:
        -   created_at: 1441570389.775376
            enc: CiC....Pm1Hm
            arn: arn:aws:kms:us-east-1:656532927350:key/920aff2e-c5f1-4040-943a-047fa387b27e
        -   created_at: 1441570391.925734
            enc: Ci...awNx
            arn: arn:aws:kms:ap-southeast-1:656532927350:key/9006a8aa-0fa6-4c14-930e-a2dfb916de1d
        pgp:
        -   fp: 85D77543B3D624B63CEA9E6DBC17301B491B3F21
            created_at: 1441570391.930042
            enc: |
                -----BEGIN PGP MESSAGE-----
                hQIMA0t4uZHfl9qgAQ//UvGAwGePyHuf2/zayWcloGaDs0MzI+zw6CmXvMRNPUsA
				...=oJgS
                -----END PGP MESSAGE-----

A copy of the encryption/decryption key is stored securely in each KMS and PGP
block. As long as one of the KMS or PGP method is still usable, you will be able
to access your data.

To decrypt a file in a ``cat`` fashion, use the ``-d`` flag:

.. code:: bash

	$ sops -d mynewtestfile.yaml

``sops`` encrypted files contain the necessary information to decrypt their content.
All a user of ``sops`` needs is valid AWS credentials and the necessary
permissions on KMS keys.

Given that, the only command a ``sops`` user needs is:

.. code:: bash

	$ sops <file>

`<file>` will be opened, decrypted, passed to a text editor (vim by default),
encrypted if modified, and saved back to its original location. All of these
steps, apart from the actual editing, are transparent to the user.

Test with the dev PGP key
~~~~~~~~~~~~~~~~~~~~~~~~~

If you want to test **sops** without having to do a bunch of setup, you can use
the example files and pgp key provided with the repository::

	$ git clone https://github.com/mozilla/sops.git
	$ cd sops
	$ gpg --import pgp/sops_functional_tests_key.asc
	$ sops example.yaml

This last step will decrypt ``example.yaml`` using the test private key.


Encrypting using GCP KMS
~~~~~~~~~~~~~~~~~~~~~~~~
GCP KMS uses `Application Default Credentials
<https://developers.google.com/identity/protocols/application-default-credentials>`_.
If you already logged in using 

.. code:: bash

	$ gcloud auth login

you can enable application default credentials using the sdk::

	$ gcloud auth application-default login

Encrypting/decrypting with GCP KMS requires a KMS ResourceID. You can use the
cloud console the get the ResourceID or you can create one using the gcloud
sdk:

.. code:: bash

	$ gcloud kms keyrings create sops --location global
	$ gcloud kms keys create sops-key --location global --keyring sops --purpose encryption
	$ gcloud kms keys list --location global --keyring sops

	# you should see
	NAME                                                                   PURPOSE          PRIMARY_STATE
	projects/my-project/locations/global/keyRings/sops/cryptoKeys/sops-key ENCRYPT_DECRYPT  ENABLED

Now you can encrypt a file using::

	$ sops --encrypt --gcp-kms projects/my-project/locations/global/keyRings/sops/cryptoKeys/sops-key test.yaml > test.enc.yaml

And decrypt it using::

	 $ sops --decrypt test.enc.yaml

Encrypting using Azure Key Vault
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Azure Key Vault integration tries several authentication methods, in
this order:

  1. Client credentials
  2. Client Certificate
  3. Username Password
  4. MSI
  5. Azure CLI auth

You can force a specific authentication method through the AZURE_AUTH_METHOD
environment variable, which may be one of: clientcredentials, clientcertificate,
usernamepassword, msi, or cli (default).

For example, you can use service principals with the following environment variables:

.. code:: bash

	AZURE_TENANT_ID
	AZURE_CLIENT_ID
	AZURE_CLIENT_SECRET

You can create a service principal using the cli like this:

.. code:: bash

	$ az ad sp create-for-rbac -n my-keyvault-sp

	{
		"appId": "<some-uuid>",
		"displayName": "my-keyvault-sp",
		"name": "http://my-keyvault-sp",
		"password": "<some-uuid>",
		"tenant": "<tenant-id>"
	}

The appId is the client id, and the password is the client secret.

Encrypting/decrypting with Azure Key Vault requires the resource identifier for
a key. This has the following form::

	https://${VAULT_URL}/keys/${KEY_NAME}/${KEY_VERSION}

To create a Key Vault and assign your service principal permissions on it
from the commandline:

.. code:: bash

	# Create a resource group if you do not have one:
	$ az group create --name sops-rg --location westeurope
	# Key Vault names are globally unique, so generate one:
	$ keyvault_name=sops-$(uuidgen | tr -d - | head -c 16)
	# Create a Vault, a key, and give the service principal access:
	$ az keyvault create --name $keyvault_name --resource-group sops-rg --location westeurope
	$ az keyvault key create --name sops-key --vault-name $keyvault_name --protection software --ops encrypt decrypt
	$ az keyvault set-policy --name $keyvault_name --resource-group sops-rg --spn $AZURE_CLIENT_ID \
		--key-permissions encrypt decrypt
	# Read the key id:
	$ az keyvault key show --name sops-key --vault-name $keyvault_name --query key.kid

	https://sops.vault.azure.net/keys/sops-key/some-string

Now you can encrypt a file using::

	$ sops --encrypt --azure-kv https://sops.vault.azure.net/keys/sops-key/some-string test.yaml > test.enc.yaml

And decrypt it using::

	 $ sops --decrypt test.enc.yaml


Adding and removing keys
~~~~~~~~~~~~~~~~~~~~~~~~

When creating new files, ``sops`` uses the PGP, KMS and GCP KMS defined in the
command line arguments ``--kms``, ``--pgp``, ``--gcp-kms`` or ``--azure-kv``, or from
the environment variables ``SOPS_KMS_ARN``, ``SOPS_PGP_FP``, ``SOPS_GCP_KMS_IDS``,
``SOPS_AZURE_KEYVAULT_URL``. That information is stored in the file under the
``sops`` section, such that decrypting files does not require providing those
parameters again.

Master PGP and KMS keys can be added and removed from a ``sops`` file in one of
two ways: by using command line flag, or by editing the file directly.

Command line flag ``--add-kms``, ``--add-pgp``, ``--add-gcp-kms``, ``--add-azure-kv``,
``--rm-kms``, ``--rm-pgp``, ``--rm-gcp-kms`` and ``--rm-azure-kv`` can be used to add
and remove keys from a file.
These flags use the comma separated syntax as the ``--kms``, ``--pgp``, ``--gcp-kms``
and ``--azure-kv`` arguments when creating new files.

.. code:: bash

	# add a new pgp key to the file and rotate the data key
	$ sops -r -i --add-pgp 85D77543B3D624B63CEA9E6DBC17301B491B3F21 example.yaml

	# remove a pgp key from the file and rotate the data key
	$ sops -r -i --rm-pgp 85D77543B3D624B63CEA9E6DBC17301B491B3F21 example.yaml

Alternatively, invoking ``sops`` with the flag **-s** will display the master keys
while editing. This method can be used to add or remove kms or pgp keys under the
sops section. Invoking ``sops`` with the **-i** flag will perform an in-place edit
instead of redirecting output to ``stdout``.

For example, to add a KMS master key to a file, add the following entry while
editing:

.. code:: yaml

	sops:
	    kms:
	    - arn: arn:aws:kms:us-east-1:656532927350:key/920aff2e-c5f1-4040-943a-047fa387b27e

And, similarly, to add a PGP master key, we add its fingerprint:

.. code:: yaml

	sops:
	    pgp:
	    - fp: 85D77543B3D624B63CEA9E6DBC17301B491B3F21

When the file is saved, ``sops`` will update its metadata and encrypt the data key
with the freshly added master keys. The removed entries are simply deleted from
the file.

When removing keys, it is recommended to rotate the data key using ``-r``,
otherwise owners of the removed key may have add access to the data key in the
past.

KMS AWS Profiles
~~~~~~~~~~~~~~~~

If you want to use a specific profile, you can do so with `aws_profile`:

.. code:: yaml

	sops:
	    kms:
	    -	arn: arn:aws:kms:us-east-1:656532927350:key/920aff2e-c5f1-4040-943a-047fa387b27e
	        aws_profile: foo

If no AWS profile is set, default credentials will be used.

Similarly the `--aws-profile` flag can be set with the command line with any of the KMS commands.


Assuming roles and using KMS in various AWS accounts
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SOPS has the ability to use KMS in multiple AWS accounts by assuming roles in
each account. Being able to assume roles is a nice feature of AWS that allows
administrators to establish trust relationships between accounts, typically from
the most secure account to the least secure one. In our use-case, we use roles
to indicate that a user of the Master AWS account is allowed to make use of KMS
master keys in development and staging AWS accounts. Using roles, a single file
can be encrypted with KMS keys in multiple accounts, thus increasing reliability
and ease of use.

You can use keys in various accounts by tying each KMS master key to a role that
the user is allowed to assume in each account. The `IAM roles
<http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html>`_
documentation has full details on how this needs to be configured on AWS's side.

From the point of view of ``sops``, you only need to specify the role a KMS key
must assume alongside its ARN, as follows:

.. code:: yaml

	sops:
	    kms:
	    -	arn: arn:aws:kms:us-east-1:656532927350:key/920aff2e-c5f1-4040-943a-047fa387b27e
	        role: arn:aws:iam::927034868273:role/sops-dev-xyz

The role must have permission to call Encrypt and Decrypt using KMS. An example
policy is shown below.

.. code:: json

	{
	  "Sid": "Allow use of the key",
	  "Effect": "Allow",
	  "Action": [
		"kms:Encrypt",
		"kms:Decrypt",
		"kms:ReEncrypt*",
		"kms:GenerateDataKey*",
		"kms:DescribeKey"
	  ],
	  "Resource": "*",
	  "Principal": {
		"AWS": [
		  "arn:aws:iam::927034868273:role/sops-dev-xyz"
		]
	  }
	}

You can specify a role in the ``--kms`` flag and ``SOPS_KMS_ARN`` variable by
appending it to the ARN of the master key, separated by a **+** sign::

	<KMS ARN>+<ROLE ARN>
	arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500+arn:aws:iam::927034868273:role/sops-dev-xyz

AWS KMS Encryption Context
~~~~~~~~~~~~~~~~~~~~~~~~~~

SOPS has the ability to use `AWS KMS key policy and encryption context 
<http://docs.aws.amazon.com/kms/latest/developerguide/encryption-context.html>`_
to refine the access control of a given KMS master key.

When creating a new file, you can specify encryption context in the
``--encryption-context`` flag by comma separated list of key-value pairs:

.. code:: bash

	$ sops --encryption-context Environment:production,Role:web-server test.dev.yaml

The format of the Encrypt Context string is ``<EncryptionContext Key>:<EncryptionContext Value>,<EncryptionContext Key>:<EncryptionContext Value>,...``

The encryption context will be stored in the file metadata and does
not need to be provided at decryption.

Encryption contexts can be used in conjunction with KMS Key Policies to define
roles that can only access a given context. An example policy is shown below:

.. code:: json

    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
      },
      "Action": "kms:Decrypt",
      "Resource": "*",
      "Condition": {
        "StringEquals": {
          "kms:EncryptionContext:AppName": "ExampleApp",
          "kms:EncryptionContext:FilePath": "/var/opt/secrets/"
        }
      }
    }

Key Rotation
~~~~~~~~~~~~

It is recommended to renew the data key on a regular basis. ``sops`` supports key
rotation via the ``-r`` flag. Invoking it on an existing file causes sops to
reencrypt the file with a new data key, which is then encrypted with the various
KMS and PGP master keys defined in the file.

.. code:: bash

	sops -r example.yaml

Using .sops.yaml conf to select KMS/PGP for new files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is often tedious to specify the ``--kms`` ``--gcp-kms`` and ``--pgp`` parameters for creation
of all new files. If your secrets are stored under a specific directory, like a
``git`` repository, you can create a ``.sops.yaml`` configuration file at the root
directory to define which keys are used for which filename.

Let's take an example:

* file named **something.dev.yaml** should use one set of KMS A
* file named **something.prod.yaml** should use another set of KMS B
* other files use a third set of KMS C
* all live under **mysecretrepo/something.{dev,prod,gcp}.yaml**

Under those circumstances, a file placed at **mysecretrepo/.sops.yaml**
can manage the three sets of configurations for the three types of files:

.. code:: yaml

	# creation rules are evaluated sequentially, the first match wins
	creation_rules:
		# upon creation of a file that matches the pattern *.dev.yaml,
		# KMS set A is used
		- path_regex: \.dev\.yaml$
		  kms: 'arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500,arn:aws:kms:us-west-2:361527076523:key/5052f06a-5d3f-489e-b86c-57201e06f31e+arn:aws:iam::361527076523:role/hiera-sops-prod'
		  pgp: 'FBC7B9E2A4F9289AC0C1D4843D16CEE4A27381B4'

		# prod files use KMS set B in the PROD IAM
		- path_regex: \.prod\.yaml$
		  kms: 'arn:aws:kms:us-west-2:361527076523:key/5052f06a-5d3f-489e-b86c-57201e06f31e+arn:aws:iam::361527076523:role/hiera-sops-prod,arn:aws:kms:eu-central-1:361527076523:key/cb1fab90-8d17-42a1-a9d8-334968904f94+arn:aws:iam::361527076523:role/hiera-sops-prod'
		  pgp: 'FBC7B9E2A4F9289AC0C1D4843D16CEE4A27381B4'

		# gcp files using GCP KMS
		- path_regex: \.gcp\.yaml$
		  gcp_kms: projects/mygcproject/locations/global/keyRings/mykeyring/cryptoKeys/thekey

		# Finally, if the rules above have not matched, this one is a
		# catchall that will encrypt the file using KMS set C
		# The absence of a path_regex means it will match everything
		- kms: 'arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500,arn:aws:kms:us-west-2:142069644989:key/846cfb17-373d-49b9-8baf-f36b04512e47,arn:aws:kms:us-west-2:361527076523:key/5052f06a-5d3f-489e-b86c-57201e06f31e'
		  pgp: 'FBC7B9E2A4F9289AC0C1D4843D16CEE4A27381B4'

When creating any file under **mysecretrepo**, whether at the root or under
a subdirectory, sops will recursively look for a ``.sops.yaml`` file. If one is
found, the filename of the file being created is compared with the filename
regexes of the configuration file. The first regex that matches is selected,
and its KMS and PGP keys are used to encrypt the file. It should be noted that
the looking up of ``.sops.yaml`` is from the working directory (CWD) instead of
the directory of the encrypting file (see `Issue 242 <https://github.com/mozilla/sops/issues/242>`_).

The path_regex checks the full path of the encrypting file. Here is another example:

* files located under directory **development** should use one set of KMS A
* files located under directory **production** should use another set of KMS B
* other files use a third set of KMS C

.. code:: yaml

    creation_rules:
        # upon creation of a file under development,
        # KMS set A is used
        - path_regex: .*/development/.*
          kms: 'arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500,arn:aws:kms:us-west-2:361527076523:key/5052f06a-5d3f-489e-b86c-57201e06f31e+arn:aws:iam::361527076523:role/hiera-sops-prod'
          pgp: 'FBC7B9E2A4F9289AC0C1D4843D16CEE4A27381B4'

        # prod files use KMS set B in the PROD IAM
        - path_regex: .*/production/.*
          kms: 'arn:aws:kms:us-west-2:361527076523:key/5052f06a-5d3f-489e-b86c-57201e06f31e+arn:aws:iam::361527076523:role/hiera-sops-prod,arn:aws:kms:eu-central-1:361527076523:key/cb1fab90-8d17-42a1-a9d8-334968904f94+arn:aws:iam::361527076523:role/hiera-sops-prod'
          pgp: 'FBC7B9E2A4F9289AC0C1D4843D16CEE4A27381B4'

        # other files use KMS set C
        - kms: 'arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500,arn:aws:kms:us-west-2:142069644989:key/846cfb17-373d-49b9-8baf-f36b04512e47,arn:aws:kms:us-west-2:361527076523:key/5052f06a-5d3f-489e-b86c-57201e06f31e'
          pgp: 'FBC7B9E2A4F9289AC0C1D4843D16CEE4A27381B4'

Creating a new file with the right keys is now as simple as

.. code:: bash

	$ sops <newfile>.prod.yaml

Note that the configuration file is ignored when KMS or PGP parameters are
passed on the sops command line or in environment variables.

Specify a different GPG executable
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``sops`` checks for the ``SOPS_GPG_EXEC`` environment variable. If specified,
it will attempt to use the executable set there instead of the default
of ``gpg``.

Example: place the following in your ``~/.bashrc``

.. code:: bash

	SOPS_GPG_EXEC = 'your_gpg_client_wrapper'


Specify a different GPG key server
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By default, ``sops`` uses the key server ``gpg.mozilla.org`` to retrieve the GPG
keys that are not present in the local keyring.
To use a different GPG key server, set the ``SOPS_GPG_KEYSERVER`` environment
variable.

Example: place the following in your ``~/.bashrc``

.. code:: bash

	SOPS_GPG_KEYSERVER = 'gpg.example.com'


Key groups
~~~~~~~~~~

By default, ``sops`` encrypts the data key for a file with each of the master keys,
such that if any of the master keys is available, the file can be decrypted.
However, it is sometimes desirable to require access to multiple master keys
in order to decrypt files. This can be achieved with key groups.

When using key groups in sops, data keys are split into parts such that keys from
multiple groups are required to decrypt a file. ``sops`` uses Shamir's Secret Sharing
to split the data key such that each key group has a fragment, each key in the
key group can decrypt that fragment, and a configurable number of fragments (threshold)
are needed to decrypt and piece together the complete data key. When decrypting a
file using multiple key groups, ``sops`` goes through key groups in order, and in
each group, tries to recover the fragment of the data key using a master key from
that group. Once the fragment is recovered, ``sops`` moves on to the next group,
until enough fragments have been recovered to obtain the complete data key.

By default, the threshold is set to the number of key groups. For example, if
you have three key groups configured in your SOPS file and you don't override
the default threshold, then one master key from each of the three groups will
be required to decrypt the file.

Management of key groups is done with the ``sops groups`` command.

For example, you can add a new key group with 3 PGP keys and 3 KMS keys to the
file ``my_file.yaml``:

.. code:: bash

    $ sops groups add --file my_file.yaml --pgp fingerprint1 --pgp fingerprint2 --pgp fingerprint3 --kms arn1 --kms arn2 --kms arn3

Or you can delete the 1st group (group number 0, as groups are zero-indexed)
from ``my_file.yaml``:

.. code:: bash

    $ sops groups delete --file my_file.yaml 0

Key groups can also be specified in the ``.sops.yaml`` config file,
like so:

.. code:: yaml

    creation_rules:
        - path_regex: .*keygroups.*
          key_groups:
          # First key group
          - pgp:
            - fingerprint1
            - fingerprint2
            kms:
            - arn: arn1
              role: role1
              context:
                foo: bar
            - arn: arn2
          # Second key group
          - pgp:
            - fingerprint3
            - fingerprint4
            kms:
            - arn: arn3
            - arn: arn4
          # Third key group
          - pgp:
            - fingerprint5

Given this configuration, we can create a new encrypted file like we normally
would, and optionally provide the ``--shamir-secret-sharing-threshold`` command line
flag if we want to override the default threshold. ``sops`` will then split the data
key into three parts (from the number of key groups) and encrypt each fragment with
the master keys found in each group.

For example:

.. code:: bash

    $ sops --shamir-secret-sharing-threshold 2 example.json

Alternatively, you can configure the Shamir threshold for each creation rule in the ``.sops.yaml`` config
with ``shamir_threshold``:

.. code:: yaml

    creation_rules:
        - path_regex: .*keygroups.*
          shamir_threshold: 2
          key_groups:
          # First key group
          - pgp:
            - fingerprint1
            - fingerprint2
            kms:
            - arn: arn1
              role: role1
              context:
                foo: bar
            - arn: arn2
          # Second key group
          - pgp:
            - fingerprint3
            - fingerprint4
            kms:
            - arn: arn3
            - arn: arn4
          # Third key group
          - pgp:
            - fingerprint5

And then run ``sops example.json``.

The threshold (``shamir_threshold``) is set to 2, so this configuration will require
master keys from two of the three different key groups in order to decrypt the file.
You can then decrypt the file the same way as with any other SOPS file:

.. code:: bash

    $ sops -d example.json

Key service
~~~~~~~~~~~

There are situations where you might want to run ``sops`` on a machine that
doesn't have direct access to encryption keys such as PGP keys. The ``sops`` key
service allows you to forward a socket so that ``sops`` can access encryption
keys stored on a remote machine. This is similar to GPG Agent, but more
portable.

SOPS uses a client-server approach to encrypting and decrypting the data
key. By default, SOPS runs a local key service in-process. SOPS uses a key
service client to send an encrypt or decrypt request to a key service, which
then performs the operation. The requests are sent using gRPC and Protocol
Buffers. The requests contain an identifier for the key they should perform
the operation with, and the plaintext or encrypted data key. The requests do
not contain any cryptographic keys, public or private.

**WARNING: the key service connection currently does not use any sort of
authentication or encryption. Therefore, it is recommended that you make sure
the connection is authenticated and encrypted in some other way, for example
through an SSH tunnel.**

Whenever we try to encrypt or decrypt a data key, SOPS will try to do so first
with the local key service (unless it's disabled), and if that fails, it will
try all other remote key services until one succeeds.

You can start a key service server by running ``sops keyservice``.

You can specify the key services the ``sops`` binary uses with ``--keyservice``.
This flag can be specified more than once, so you can use multiple key
services. The local key service can be disabled with
``enable-local-keyservice=false``.

For example, to decrypt a file using both the local key service and the key
service exposed on the unix socket located in ``/tmp/sops.sock``, you can run:

.. code:: bash

    $ sops --keyservice unix:///tmp/sops.sock -d file.yaml`

And if you only want to use the key service exposed on the unix socket located
in ``/tmp/sops.sock`` and not the local key service, you can run:

.. code:: bash

    $ sops --enable-local-keyservice=false --keyservice unix:///tmp/sops.sock -d file.yaml

Auditing
~~~~~~~~

Sometimes, users want to be able to tell what files were accessed by whom in an
environment they control. For this reason, SOPS can generate audit logs to
record activity on encrypted files. When enabled, SOPS will write a log entry
into a pre-configured PostgreSQL database when a file is decrypted. The log
includes a timestamp, the username SOPS is running as, and the file that was
decrypted.

In order to enable auditing, you must first create the database and credentials
using the schema found in ``audit/schema.sql``. This schema defines the
tables that store the audit events and a role named ``sops`` that only has
permission to add entries to the audit event tables. The default password for
the role ``sops`` is ``sops``. You should change this password.

Once you have created the database, you have to tell SOPS how to connect to it.
Because we don't want users of SOPS to be able to control auditing, the audit
configuration file location is not configurable, and must be at
``/etc/sops/audit.yaml``. This file should have strict permissions such
that only the root user can modify it.

For example, to enable auditing to a PostgreSQL database named ``sops`` running
on localhost, using the user ``sops`` and the password ``sops``,
``/etc/sops/audit.yaml`` should have the following contents:

.. code:: yaml

    backends:
        postgres:
            - connection_string: "postgres://sops:sops@localhost/sops?sslmode=verify-full"


You can find more information on the ``connection_string`` format in the
`PostgreSQL docs <https://www.postgresql.org/docs/current/static/libpq-connect.html#libpq-connstring>`_.

Under the ``postgres`` map entry in the above YAML is a list, so one can
provide more than one backend, and SOPS will log to all of them:

.. code:: yaml

    backends:
        postgres:
            - connection_string: "postgres://sops:sops@localhost/sops?sslmode=verify-full"
            - connection_string: "postgres://sops:sops@remotehost/sops?sslmode=verify-full"

Saving Output to a File
~~~~~~~~~~~~~~~~~~~~~~~
By default ``sops`` just dumps all the output to the standard output. We can use the
``--output`` flag followed by a filename to save the output to the file specified.
Beware using both ``--in-place`` and ``--output`` flags will result in an error.


Using the publish command
~~~~~~~~~~~~~~~~~~~~~~~~~
``sops publish $file`` publishes a file to a pre-configured destination (this lives in the sops
config file). Additionally, support re-encryption rules that work just like the creation rules.

This command requires a ``.sops.yaml`` configuration file. Below is an example:

.. code:: yaml

   destination_rules:
      - s3_bucket: "sops-secrets"
        path_regex: s3/*
        recreation_rule:
           pgp: F69E4901EDBAD2D1753F8C67A64535C4163FB307
      - gcs_bucket: "sops-secrets"
        path_regex: gcs/*
        recreation_rule:
           pgp: F69E4901EDBAD2D1753F8C67A64535C4163FB307
      - vault_path: "sops/"
        vault_kv_mount_name: "secret/" # default
        vault_kv_version: 2 # default
        path_regex: vault/*

The above configuration will place all files under ``s3/*`` into the S3 bucket ``sops-secrets``,
all files under ``gcs/*`` into the GCS bucket ``sops-secrets``, and the contents of all files under
``vault/*`` into Vault's KV store under the path ``secrets/sops/``. For the files that will be
published to S3 and GCS, it will decrypt them and re-encrypt them using the
``F69E4901EDBAD2D1753F8C67A64535C4163FB307`` pgp key.

You would deploy a file to S3 with a command like: ``sops publish s3/app.yaml``

Publishing to Vault
*******************

There are a few settings for Vault that you can place in your destination rules. The first
is ``vault_path``, which is required. The others are optional, and they are
``vault_address``, ``vault_kv_mount_name``, ``vault_kv_version``.

``sops`` uses the official Vault API provided by Hashicorp, which makes use of `environment
variables <https://www.vaultproject.io/docs/commands/#environment-variables>`_ for
configuring the client.

``vault_kv_mount_name`` is used if your Vault KV is mounted somewhere other than ``secret/``.
``vault_kv_version`` supports ``1`` and ``2``, with ``2`` being the default.

Below is an example of publishing to Vault (using token auth with a local dev instance of Vault).

.. code:: bash

   $ export VAULT_TOKEN=...
   $ export VAULT_ADDR='http://127.0.0.1:8200'
   $ sops -d vault/test.yaml
   example_string: bar
   example_number: 42
   example_map:
       key: value
   $ sops publish vault/test.yaml
   uploading /home/user/sops_directory/vault/test.yaml to http://127.0.0.1:8200/v1/secret/data/sops/test.yaml ? (y/n): y
   $ vault kv get secret/sops/test.yaml
   ====== Metadata ======
   Key              Value
   ---              -----
   created_time     2019-07-11T03:32:17.074792017Z
   deletion_time    n/a
   destroyed        false
   version          3

   ========= Data =========
   Key               Value
   ---               -----
   example_map       map[key:value]
   example_number    42
   example_string    bar


Important information on types
------------------------------

YAML and JSON type extensions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``sops`` uses the file extension to decide which encryption method to use on the file
content. ``YAML``, ``JSON``, ``ENV``, and ``INI`` files are treated as trees of data, and key/values are
extracted from the files to only encrypt the leaf values. The tree structure is also
used to check the integrity of the file.

Therefore, if a file is encrypted using a specific format, it need to be decrypted
in the same format. The easiest way to achieve this is to conserve the original file
extension after encrypting a file. For example:

.. code:: bash

	$ sops -e -i myfile.json
	$ sops -d myfile.json

If you want to change the extension of the file once encrypted, you need to provide
sops with the ``--input-type`` flag upon decryption. For example:

.. code:: bash

	$ sops -e myfile.json > myfile.json.enc

	$ sops -d --input-type json myfile.json.enc

YAML anchors
~~~~~~~~~~~~
``sops`` only supports a subset of ``YAML``'s many types. Encrypting YAML files that
contain strings, numbers and booleans will work fine, but files that contain anchors
will not work, because the anchors redefine the structure of the file at load time.

This file will not work in ``sops``:

.. code:: yaml

	bill-to:  &id001
	    street: |
	        123 Tornado Alley
	        Suite 16
	    city:   East Centerville
	    state:  KS

	ship-to:  *id001

``sops`` uses the path to a value as additional data in the AEAD encryption, and thus
dynamic paths generated by anchors break the authentication step.

JSON and TEXT file types do not support anchors and thus have no such limitation.

YAML Streams
~~~~~~~~~~~~

``YAML`` supports having more than one "document" in a single file, while
formats like ``JSON`` do not. ``sops`` is able to handle both. This means the
following multi-document will be encrypted as expected:

.. code:: yaml

	---
	data: foo
	---
	data: bar

Note that the ``sops`` metadata, i.e. the hash, etc, is computed for the physical
file rather than each internal "document".

Top-level arrays
~~~~~~~~~~~~~~~~
``YAML`` and ``JSON`` top-level arrays are not supported, because ``sops``
needs a top-level ``sops`` key to store its metadata.

This file will not work in sops:

.. code:: yaml

	---
	  - some
	  - array
	  - elements

But this one will because because the ``sops`` key can be added at the same level as the
``data`` key.

.. code:: yaml

	data:
	  - some
	  - array
	  - elements

Similarly, with ``JSON`` arrays, this document will not work:

.. code:: json

	[
	  "some",
	  "array",
	  "elements"
	]


But this one will work just fine:

.. code:: json

	{
	  "data": [
	    "some",
	    "array",
	    "elements"
	  ]
	}


Examples
--------

Take a look into the `examples <https://github.com/mozilla/sops/tree/master/examples>`_ folder for detailed use cases of sops in a CI environment. The section below describes specific tips for common use cases.

Creating a new file
~~~~~~~~~~~~~~~~~~~

The command below creates a new file with a data key encrypted by KMS and PGP.

.. code:: bash

	$ sops --kms "arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500" --pgp C9CAB0AF1165060DB58D6D6B2653B624D620786D /path/to/new/file.yaml

Encrypting an existing file
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Similar to the previous command, we tell sops to use one KMS and one PGP key.
The path points to an existing cleartext file, so we give sops flag ``-e`` to
encrypt the file, and redirect the output to a destination file.

.. code:: bash

	$ export SOPS_KMS_ARN="arn:aws:kms:us-west-2:927034868273:key/fe86dd69-4132-404c-ab86-4269956b4500"
	$ export SOPS_PGP_FP="C9CAB0AF1165060DB58D6D6B2653B624D620786D"
	$ sops -e /path/to/existing/file.yaml > /path/to/new/encrypted/file.yaml

Decrypt the file with ``-d``.

.. code:: bash

	$ sops -d /path/to/new/encrypted/file.yaml

Encrypt or decrypt a file in place
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rather than redirecting the output of ``-e`` or ``-d``, sops can replace the
original file after encrypting or decrypting it.

.. code:: bash

	# file.yaml is in cleartext
	$ sops -e -i /path/to/existing/file.yaml
	# file.yaml is now encrypted
	$ sops -d -i /path/to/existing/file.yaml
	# file.yaml is back in cleartext

Encrypting binary files
~~~~~~~~~~~~~~~~~~~~~~~

``sops`` primary use case is encrypting YAML and JSON configuration files, but it
also has the ability to manage binary files. When encrypting a binary, sops will
read the data as bytes, encrypt it, store the encrypted base64 under
``tree['data']`` and write the result as JSON.

Note that the base64 encoding of encrypted data can actually make the encrypted
file larger than the cleartext one.

In-place encryption/decryption also works on binary files.

.. code::

	$ dd if=/dev/urandom of=/tmp/somerandom bs=1024
	count=512
	512+0 records in
	512+0 records out
	524288 bytes (524 kB) copied, 0.0466158 s, 11.2 MB/s

	$ sha512sum /tmp/somerandom
	9589bb20280e9d381f7a192000498c994e921b3cdb11d2ef5a986578dc2239a340b25ef30691bac72bdb14028270828dad7e8bd31e274af9828c40d216e60cbe /tmp/somerandom

	$ sops -e -i /tmp/somerandom
	please wait while a data encryption key is being generated and stored securely

	$ sops -d -i /tmp/somerandom

	$ sha512sum /tmp/somerandom
	9589bb20280e9d381f7a192000498c994e921b3cdb11d2ef5a986578dc2239a340b25ef30691bac72bdb14028270828dad7e8bd31e274af9828c40d216e60cbe /tmp/somerandom

Extract a sub-part of a document tree
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``sops`` can extract a specific part of a YAML or JSON document, by provided the
path in the ``--extract`` command line flag. This is useful to extract specific
values, like keys, without needing an extra parser.

.. code:: bash

	$ sops -d --extract '["app2"]["key"]' ~/git/svc/sops/example.yaml
	-----BEGIN RSA PRIVATE KEY-----
	MIIBPAIBAAJBAPTMNIyHuZtpLYc7VsHQtwOkWYobkUblmHWRmbXzlAX6K8tMf3Wf
	ImcbNkqAKnELzFAPSBeEMhrBN0PyOC9lYlMCAwEAAQJBALXD4sjuBn1E7Y9aGiMz
	bJEBuZJ4wbhYxomVoQKfaCu+kH80uLFZKoSz85/ySauWE8LgZcMLIBoiXNhDKfQL
	vHECIQD6tCG9NMFWor69kgbX8vK5Y+QL+kRq+9HK6yZ9a+hsLQIhAPn4Ie6HGTjw
	fHSTXWZpGSan7NwTkIu4U5q2SlLjcZh/AiEA78NYRRBwGwAYNUqzutGBqyXKUl4u
	Erb0xAEyVV7e8J0CIQC8VBY8f8yg+Y7Kxbw4zDYGyb3KkXL10YorpeuZR4LuQQIg
	bKGPkMM4w5blyE1tqGN0T7sJwEx+EUOgacRNqM2ljVA=
	-----END RSA PRIVATE KEY-----

The tree path syntax uses regular python dictionary syntax, without the
variable name. Extract keys by naming them, and array elements by numbering
them.

.. code:: bash

	$ sops -d --extract '["an_array"][1]' ~/git/svc/sops/example.yaml
	secretuser2

Set a sub-part in a document tree
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``sops`` can set a specific part of a YAML or JSON document, by providing
the path and value in the ``--set`` command line flag. This is useful to
set specific values, like keys, without needing an editor.

.. code:: bash

	$ sops --set '["app2"]["key"] "app2keystringvalue"'  ~/git/svc/sops/example.yaml

The tree path syntax uses regular python dictionary syntax, without the
variable name. Set to keys by naming them, and array elements by
numbering them.

.. code:: bash

	$ sops --set '["an_array"][1] "secretuser2"' ~/git/svc/sops/example.yaml 

The value must be formatted as json.

.. code:: bash

	$ sops --set '["an_array"][1] {"uid1":null,"uid2":1000,"uid3":["bob"]}' ~/git/svc/sops/example.yaml

Using sops as a library in a python script
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can import sops as a module and use it in your python program.

.. code:: python

	import sops

	pathtype = sops.detect_filetype(path)
	tree = sops.load_file_into_tree(path, pathtype)
	sops_key, tree = sops.get_key(tree)
	tree = sops.walk_and_decrypt(tree, sops_key)
	sops.write_file(tree, path=path, filetype=pathtype)

Note: this uses the previous implemenation of `sops` written in python, 
and so doesn't support newer features such as GCP-KMS. 
To use the current version, call out to `sops` using `subprocess.check_output`

Showing diffs in cleartext in git
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You most likely want to store encrypted files in a version controlled repository.
Sops can be used with git to decrypt files when showing diffs between versions.
This is very handy for reviewing changes or visualizing history.

To configure sops to decrypt files during diff, create a ``.gitattributes`` file
at the root of your repository that contains a filter and a command.

.. code:: 

	*.yaml diff=sopsdiffer

Here we only care about YAML files. ``sopsdiffer`` is an arbitrary name that we map
to a sops command in the git configuration file of the repository.

.. code:: bash

	$ git config diff.sopsdiffer.textconv "sops -d"

	$ grep -A 1 sopsdiffer .git/config
	[diff "sopsdiffer"]
		textconv = "sops -d"

With this in place, calls to ``git diff`` will decrypt both previous and current
versions of the target file prior to displaying the diff. And it even works with
git client interfaces, because they call git diff under the hood!

Encrypting only parts of a file
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note: this only works on YAML and JSON files, not on BINARY files.

By default, ``sops`` encrypts all the values of a YAML or JSON file and leaves the
keys in cleartext. In some instances, you may want to exclude some values from
being encrypted. This can be accomplished by adding the suffix **_unencrypted**
to any key of a file. When set, all values underneath the key that set the
**_unencrypted** prefix will be left in cleartext.

Note that, while in cleartext, unencrypted content is still added to the
checksum of the file, and thus cannot be modified outside of sops without
breaking the file integrity check.

The unencrypted suffix can be set to a different value using the
``--unencrypted-suffix`` option.

Conversely, you can opt in to only encrypt some values in a YAML or JSON file,
by adding a chosen suffix to those keys and passing it to the ``--encrypted-suffix`` option.

A third method is to use the ``--encrypted-regex`` which will only encrypt values under
keys that match the supplied regular expression.  For example, this command:

.. code:: bash

	$ sops --encrypt --encrypted-regex '&(data|stringData)' k8s-secrets.yaml

will encrypt the values under the ``data`` and ``stringData`` keys in a YAML file
containing kubernetes secrets.  It will not encrypt other values that help you to
navigate the file, like ``metadata`` which contains the secrets' names.

You can also specify these options in the ``.sops.yaml`` config file.

Note: these three options ``--unencrypted-suffix``, ``--encrypted-suffix``, and ``--encrypted-regex`` are 
mutually exclusive and cannot all be used in the same file.

Encryption Protocol
-------------------

When sops creates a file, it generates a random 256 bit data key and asks each
KMS and PGP master key to encrypt the data key. The encrypted version of the data
key is stored in the ``sops`` metadata under ``sops.kms`` and ``sops.pgp``.

For KMS:

.. code:: yaml

    sops:
        kms:
        -   enc: CiC6yCOtzsnFhkfdIslYZ0bAf//gYLYCmIu87B3sy/5yYxKnAQEBAQB4usgjrc7JxYZH3SLJWGdGwH//4GC2ApiLvOwd7Mv+cmMAAAB+MHwGCSqGSIb3DQEHBqBvMG0CAQAwaAYJKoZIhvcNAQcBMB4GCWCGSAFlAwQBLjARBAyGdRODuYMHbA8Ozj8CARCAO7opMolPJUmBXd39Zlp0L2H9fzMKidHm1vvaF6nNFq0ClRY7FlIZmTm4JfnOebPseffiXFn9tG8cq7oi
            enc_ts: 1439568549.245995
            arn: arn:aws:kms:us-east-1:656532927350:key/920aff2e-c5f1-4040-943a-047fa387b27e

For PGP:

.. code:: yaml

    sops:
        pgp:
        -   fp: 85D77543B3D624B63CEA9E6DBC17301B491B3F21
            created_at: 1441570391.930042
            enc: |
                -----BEGIN PGP MESSAGE-----
                Version: GnuPG v1

                hQIMA0t4uZHfl9qgAQ//UvGAwGePyHuf2/zayWcloGaDs0MzI+zw6CmXvMRNPUsA
                pAgRKczJmDu4+XzN+cxX5Iq9xEWIbny9B5rOjwTXT3qcUYZ4Gkzbq4MWkjuPp/Iv
                qO4MJaYzoH5YxC4YORQ2LvzhA2YGsCzYnljmatGEUNg01yJ6r5mwFwDxl4Nc80Cn
                RwnHuGExK8j1jYJZu/juK1qRbuBOAuruIPPWVdFB845PA7waacG1IdUW3ZtBkOy3
                O0BIfG2ekRg0Nik6sTOhDUA+l2bewCcECI8FYCEjwHm9Sg5cxmP2V5m1mby+uKAm
                kewaoOyjbmV1Mh3iI1b/AQMr+/6ZE9MT2KnsoWosYamFyjxV5r1ZZM7cWKnOT+tu
                KOvGhTV1TeOfVpajNTNwtV/Oyh3mMLQ0F0HgCTqomQVqw5+sj7OWAASuD3CU/dyo
                pcmY5Qe0TNL1JsMNEH8LJDqSh+E0hsUxdY1ouVsg3ysf6mdM8ciWb3WRGxih1Vmf
                unfLy8Ly3V7ZIC8EHV8aLJqh32jIZV4i2zXIoO4ZBKrudKcECY1C2+zb/TziVAL8
                qyPe47q8gi1rIyEv5uirLZjgpP+JkDUgoMnzlX334FZ9pWtQMYW4Y67urAI4xUq6
                /q1zBAeHoeeeQK+YKDB7Ak/Y22YsiqQbNp2n4CKSKAE4erZLWVtDvSp+49SWmS/S
                XgGi+13MaXIp0ecPKyNTBjF+NOw/I3muyKr8EbDHrd2XgIT06QXqjYLsCb1TZ0zm
                xgXsOTY3b+ONQ2zjhcovanDp7/k77B+gFitLYKg4BLZsl7gJB12T8MQnpfSmRT4=
                =oJgS
                -----END PGP MESSAGE-----

``sops`` then opens a text editor on the newly created file. The user adds data to the
file and saves it when done.

Upon save, sops browses the entire file as a key/value tree. Every time sops
encounters a leaf value (a value that does not have children), it encrypts the
value with AES256_GCM using the data key and a 256 bit random initialization
vector.

Each file uses a single data key to encrypt all values of a document, but each
value receives a unique initialization vector and has unique authentication data.

Additional data is used to guarantee the integrity of the encrypted data
and of the tree structure: when encrypting the tree, key names are concatenated
into a byte string that is used as AEAD additional data (aad) when encrypting
values. We expect that keys do not carry sensitive information, and
keeping them in cleartext allows for better diff and overall readability.

Any valid KMS or PGP master key can later decrypt the data key and access the
data.

Multiple master keys allow for sharing encrypted files without sharing master
keys, and provide a disaster recovery solution. The recommended way to use sops
is to have two KMS master keys in different regions and one PGP public key with
the private key stored offline. If, by any chance, both KMS master keys are
lost, you can always recover the encrypted data using the PGP private key.

Message Authentication Code
~~~~~~~~~~~~~~~~~~~~~~~~~~~

In addition to authenticating branches of the tree using keys as additional
data, sops computes a MAC on all the values to ensure that no value has been
added or removed fraudulently. The MAC is stored encrypted with AES_GCM and
the data key under tree->`sops`->`mac`.

Motivation
----------

Automating the distribution of secrets and credentials to components of an
infrastructure is a hard problem. We know how to encrypt secrets and share them
between humans, but extending that trust to systems is difficult. Particularly
when these systems follow devops principles and are created and destroyed
without human intervention. The issue boils down to establishing the initial
trust of a system that just joined the infrastructure, and providing it access
to the secrets it needs to configure itself.

The initial trust
~~~~~~~~~~~~~~~~~

In many infrastructures, even highly dynamic ones, the initial trust is
established by a human. An example is seen in Puppet by the way certificates are
issued: when a new system attempts to join a Puppetmaster, an administrator
must, by default, manually approve the issuance of the certificate the system
needs. This is cumbersome, and many puppetmasters are configured to auto-sign
new certificates to work around that issue. This is obviously not recommended
and far from ideal.

AWS provides a more flexible approach to trusting new systems. It uses a
powerful mechanism of roles and identities. In AWS, it is possible to verify
that a new system has been granted a specific role at creation, and it is
possible to map that role to specific resources. Instead of trusting new systems
directly, the administrator trusts the AWS permission model and its automation
infrastructure. As long as AWS keys are safe, and the AWS API is secure, we can
assume that trust is maintained and systems are who they say they are.

KMS, Trust and secrets distribution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Using the AWS trust model, we can create fine grained access controls to
Amazon's Key Management Service (KMS). KMS is a service that encrypts and
decrypts data with AES_GCM, using keys that are never visible to users of the
service. Each KMS master key has a set of role-based access controls, and
individual roles are permitted to encrypt or decrypt using the master key. KMS
helps solve the problem of distributing keys, by shifting it into an access
control problem that can be solved using AWS's trust model.

Operational requirements
~~~~~~~~~~~~~~~~~~~~~~~~

When Mozilla's Services Operations team started revisiting the issue of
distributing secrets to EC2 instances, we set a goal to store these secrets
encrypted until the very last moment, when they need to be decrypted on target
systems. Not unlike many other organizations that operate sufficiently complex
automation, we found this to be a hard problem with a number of prerequisites:

1. Secrets must be stored in YAML files for easy integration into hiera

2. Secrets must be stored in GIT, and when a new CloudFormation stack is
   built, the current HEAD is pinned to the stack. (This allows secrets to
   be changed in GIT without impacting the current stack that may
   autoscale).

3. Entries must be encrypted separately. Encrypting entire files as blobs makes
   git conflict resolution almost impossible. Encrypting each entry
   separately is much easier to manage.

4. Secrets must always be encrypted on disk (admin laptop, upstream
   git repo, jenkins and S3) and only be decrypted on the target
   systems

SOPS can be used to encrypt YAML, JSON and BINARY files. In BINARY mode, the
content of the file is treated as a blob, the same way PGP would encrypt an
entire file. In YAML and JSON modes, however, the content of the file is
manipulated as a tree where keys are stored in cleartext, and values are
encrypted. hiera-eyaml does something similar, and over the years we learned
to appreciate its benefits, namely:

* diffs are meaningful. If a single value of a file is modified, only that
  value will show up in the diff. The diff is still limited to only showing
  encrypted data, but that information is already more granular that
  indicating that an entire file has changed.

* conflicts are easier to resolve. If multiple users are working on the
  same encrypted files, as long as they don't modify the same values,
  changes are easy to merge. This is an improvement over the PGP
  encryption approach where unsolvable conflicts often happen when
  multiple users work on the same file.

OpenPGP integration
~~~~~~~~~~~~~~~~~~~

OpenPGP gets a lot of bad press for being an outdated crypto protocol, and while
true, what really made us look for alternatives is the difficulty of managing and
distributing keys to systems. With KMS, we manage permissions to an API, not keys,
and that's a lot easier to do.

But PGP is not dead yet, and we still rely on it heavily as a backup solution:
all our files are encrypted with KMS and with one PGP public key, with its
private key stored securely for emergency decryption in the event that we lose
all our KMS master keys.

SOPS can be used without KMS entirely, the same way you would use an encrypted
PGP file: by referencing the pubkeys of each individual who has access to the file.
It can easily be done by providing sops with a comma-separated list of public keys
when creating a new file:

.. code:: bash

	$ sops --pgp "E60892BB9BD89A69F759A1A0A3D652173B763E8F,84050F1D61AF7C230A12217687DF65059EF093D3,85D77543B3D624B63CEA9E6DBC17301B491B3F21" mynewfile.yaml

Threat Model
------------

The security of the data stored using sops is as strong as the weakest
cryptographic mechanism. Values are encrypted using AES256_GCM which is the
strongest symmetric encryption algorithm known today. Data keys are encrypted
in either KMS, which also uses AES256_GCM, or PGP which uses either RSA or
ECDSA keys.

Going from the most likely to the least likely, the threats are as follows:

Compromised AWS credentials grant access to KMS master key
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

An attacker with access to an AWS console can grant itself access to one of
the KMS master keys used to encrypt a sops data key. This threat should be
mitigated by protecting AWS accesses with strong controls, such as multi-factor
authentication, and also by performing regular audits of permissions granted
to AWS users.

Compromised PGP key
~~~~~~~~~~~~~~~~~~~

PGP keys are routinely mishandled, either because owners copy them from
machine to machine, or because the key is left forgotten on an unused machine
an attacker gains access to. When using PGP encryption, sops users should take
special care of PGP private keys, and store them on smart cards or offline
as often as possible.

Factorized RSA key
~~~~~~~~~~~~~~~~~~

sops doesn't apply any restriction on the size or type of PGP keys. A weak PGP
keys, for example 512 bits RSA, could be factorized by an attacker to gain
access to the private key and decrypt the data key. Users of sops should rely
on strong keys, such as 2048+ bits RSA keys, or 256+ bits ECDSA keys.

Weak AES cryptography
~~~~~~~~~~~~~~~~~~~~~

A vulnerability in AES256_GCM could potentially leak the data key or the KMS
master key used by a sops encrypted file. While no such vulnerability exists
today, we recommend that users keep their encrypted files reasonably private.

Backward compatibility
----------------------

``sops`` will remain backward compatible on the major version, meaning that all
improvements brought to the 1.X and 2.X branches (current) will maintain the
file format introduced in **1.0**.

Security
--------

Please report security issues to jvehent at mozilla dot com, or by using one
of the contact method available on keybase: `https://keybase.io/jvehent <https://keybase.io/jvehent>`_

License
-------
Mozilla Public License Version 2.0

Authors
-------

The core team is composed of:

* Adrian Utrilla @autrilla
* Julien Vehent @jvehent
* AJ Banhken @ajvb

And a whole bunch of `contributors <https://github.com/mozilla/sops/graphs/contributors>`_

Credits
-------

`sops` was inspired by `hiera-eyaml <https://github.com/TomPoulton/hiera-eyaml>`_,
`credstash <https://github.com/LuminalOSS/credstash>`_ ,
`sneaker <https://github.com/codahale/sneaker>`_,
`password store <http://www.passwordstore.org/>`_ and too many years managing
PGP encrypted files by hand...

Documentation

Overview

Package sops manages JSON, YAML and BINARY documents to be encrypted or decrypted.

This package should not be used directly. Instead, Sops users should install the command line client via `go get -u go.mozilla.org/sops/cmd/sops`, or use the decryption helper provided at `go.mozilla.org/sops/decrypt`.

We do not guarantee API stability for any package other than `go.mozilla.org/sops/decrypt`.

A Sops document is a Tree composed of a data branch with arbitrary key/value pairs and a metadata branch with encryption and integrity information.

In JSON and YAML formats, the structure of the cleartext tree is preserved, keys are stored in cleartext and only values are encrypted. Keeping the values in cleartext provides better readability when storing Sops documents in version controls, and allows for merging competing changes on documents. This is a major difference between Sops and other encryption tools that store documents as encrypted blobs.

In BINARY format, the cleartext data is treated as a single blob and the encrypted document is in JSON format with a single `data` key and a single encrypted value.

Sops allows operators to encrypt their documents with multiple master keys. Each of the master key defined in the document is able to decrypt it, allowing users to share documents amongst themselves without sharing keys, or using a PGP key as a backup for KMS.

In practice, this is achieved by generating a data key for each document that is used to encrypt all values, and encrypting the data with each master key defined. Being able to decrypt the data key gives access to the document.

The integrity of each document is guaranteed by calculating a Message Authentication Code (MAC) that is stored encrypted by the data key. When decrypting a document, the MAC should be recalculated and compared with the MAC stored in the document to verify that no fraudulent changes have been applied. The MAC covers keys and values as well as their ordering.

Index

Constants

View Source
const DefaultUnencryptedSuffix = "_unencrypted"

DefaultUnencryptedSuffix is the default suffix a TreeItem key has to end with for sops to leave its Value unencrypted

View Source
const MacMismatch = sopsError("MAC mismatch")

MacMismatch occurs when the computed MAC does not match the expected ones

View Source
const MetadataNotFound = sopsError("sops metadata not found")

MetadataNotFound occurs when the input file is malformed and doesn't have sops metadata in it

Variables

This section is empty.

Functions

func EmitAsMap

func EmitAsMap(in TreeBranches) (map[string]interface{}, error)

EmitAsMap will emit the tree branches as a map. This is used by the publish command for writing decrypted trees to various destinations. Should only be used for outputting to data structures in code.

func ToBytes

func ToBytes(in interface{}) ([]byte, error)

ToBytes converts a string, int, float or bool to a byte representation.

Types

type Cipher

type Cipher interface {
	// Encrypt takes a plaintext, a key and additional data and returns the plaintext encrypted with the key, using the
	// additional data for authentication
	Encrypt(plaintext interface{}, key []byte, additionalData string) (ciphertext string, err error)
	// Encrypt takes a ciphertext, a key and additional data and returns the ciphertext encrypted with the key, using
	// the additional data for authentication
	Decrypt(ciphertext string, key []byte, additionalData string) (plaintext interface{}, err error)
}

Cipher provides a way to encrypt and decrypt the data key used to encrypt and decrypt sops files, so that the data key can be stored alongside the encrypted content. A Cipher must be able to decrypt the values it encrypts.

type Comment

type Comment struct {
	Value string
}

Comment represents a comment in the sops tree for the file formats that actually support them.

type EncryptedFileEmitter

type EncryptedFileEmitter interface {
	EmitEncryptedFile(Tree) ([]byte, error)
}

EncryptedFileEmitter is the interface for emitting encrypting files. It provides a way to emit encrypted files from the internal SOPS representation.

type EncryptedFileLoader

type EncryptedFileLoader interface {
	LoadEncryptedFile(in []byte) (Tree, error)
}

EncryptedFileLoader is the interface for loading of encrypted files. It provides a way to load encrypted SOPS files into the internal SOPS representation. Because it loads encrypted files, the returned data structure already contains all SOPS metadata.

type KeyGroup

type KeyGroup []keys.MasterKey

KeyGroup is a slice of SOPS MasterKeys that all encrypt the same part of the data key

type Metadata

type Metadata struct {
	LastModified              time.Time
	UnencryptedSuffix         string
	EncryptedSuffix           string
	EncryptedRegex            string
	MessageAuthenticationCode string
	Version                   string
	KeyGroups                 []KeyGroup
	// ShamirThreshold is the number of key groups required to recover the
	// original data key
	ShamirThreshold int
	// DataKey caches the decrypted data key so it doesn't have to be decrypted with a master key every time it's needed
	DataKey []byte
}

Metadata holds information about a file encrypted by sops

func (Metadata) GetDataKey

func (m Metadata) GetDataKey() ([]byte, error)

GetDataKey retrieves the data key from the first MasterKey in the Metadata's KeySources that's able to return it, using the local KeyService

func (Metadata) GetDataKeyWithKeyServices

func (m Metadata) GetDataKeyWithKeyServices(svcs []keyservice.KeyServiceClient) ([]byte, error)

GetDataKeyWithKeyServices retrieves the data key, asking KeyServices to decrypt it with each MasterKey in the Metadata's KeySources until one of them succeeds.

func (*Metadata) MasterKeyCount

func (m *Metadata) MasterKeyCount() int

MasterKeyCount returns the number of master keys available

func (*Metadata) UpdateMasterKeys

func (m *Metadata) UpdateMasterKeys(dataKey []byte) (errs []error)

UpdateMasterKeys encrypts the data key with all master keys

func (*Metadata) UpdateMasterKeysWithKeyServices

func (m *Metadata) UpdateMasterKeysWithKeyServices(dataKey []byte, svcs []keyservice.KeyServiceClient) (errs []error)

UpdateMasterKeysWithKeyServices encrypts the data key with all master keys using the provided key services

type PlainFileEmitter

type PlainFileEmitter interface {
	EmitPlainFile(TreeBranches) ([]byte, error)
}

PlainFileEmitter is the interface for emitting plain text files. It provides a way to emit plain text files from the internal SOPS representation so that they can be shown

type PlainFileLoader

type PlainFileLoader interface {
	LoadPlainFile(in []byte) (TreeBranches, error)
}

PlainFileLoader is the interface for loading of plain text files. It provides a way to load unencrypted files into SOPS. Because the files it loads are unencrypted, the returned data structure does not contain any metadata.

type Store

Store is used to interact with files, both encrypted and unencrypted.

type Tree

type Tree struct {
	Metadata Metadata
	Branches TreeBranches
	// FilePath is the path of the file this struct represents
	FilePath string
}

Tree is the data structure used by sops to represent documents internally

func (Tree) Decrypt

func (tree Tree) Decrypt(key []byte, cipher Cipher) (string, error)

Decrypt walks over the tree and decrypts all values with the provided cipher, except those whose key ends with the UnencryptedSuffix specified on the Metadata struct, those not ending with EncryptedSuffix, if EncryptedSuffix is provided (by default it is not), or those not matching EncryptedRegex, if EncryptedRegex is provided (by default it is not). If decryption is successful, it returns the MAC for the decrypted tree.

func (Tree) Encrypt

func (tree Tree) Encrypt(key []byte, cipher Cipher) (string, error)

Encrypt walks over the tree and encrypts all values with the provided cipher, except those whose key ends with the UnencryptedSuffix specified on the Metadata struct, those not ending with EncryptedSuffix, if EncryptedSuffix is provided (by default it is not), or those not matching EncryptedRegex, if EncryptedRegex is provided (by default it is not). If encryption is successful, it returns the MAC for the encrypted tree.

func (Tree) GenerateDataKey

func (tree Tree) GenerateDataKey() ([]byte, []error)

GenerateDataKey generates a new random data key and encrypts it with all MasterKeys.

func (*Tree) GenerateDataKeyWithKeyServices

func (tree *Tree) GenerateDataKeyWithKeyServices(svcs []keyservice.KeyServiceClient) ([]byte, []error)

GenerateDataKeyWithKeyServices generates a new random data key and encrypts it with all MasterKeys.

type TreeBranch

type TreeBranch []TreeItem

TreeBranch is a branch inside sops's tree. It is a slice of TreeItems and is therefore ordered

func (TreeBranch) Set

func (branch TreeBranch) Set(path []interface{}, value interface{}) TreeBranch

Set sets a value on a given tree for the specified path

func (TreeBranch) Truncate

func (branch TreeBranch) Truncate(path []interface{}) (interface{}, error)

Truncate truncates the tree to the path specified

type TreeBranches

type TreeBranches []TreeBranch

TreeBranches is a collection of TreeBranch Trees usually have more than one branch

type TreeItem

type TreeItem struct {
	Key   interface{}
	Value interface{}
}

TreeItem is an item inside sops's tree

type UserError

type UserError interface {
	error
	UserError() string
}

UserError is a well-formatted error for the purpose of being displayed to the end user.

type ValueEmitter

type ValueEmitter interface {
	EmitValue(interface{}) ([]byte, error)
}

ValueEmitter is the interface for emitting a value. It provides a way to emit values from the internal SOPS representation so that they can be shown

Directories

Path Synopsis
Package aes defines a Cipher that uses 256-bit AES-GCM authenticated encryption to encrypt values the SOPS tree.
Package aes defines a Cipher that uses 256-bit AES-GCM authenticated encryption to encrypt values the SOPS tree.
Package azkv contains an implementation of the go.mozilla.org/sops/keys.MasterKey interface that encrypts and decrypts the data key using Azure Key Vault with the Azure Go SDK.
Package azkv contains an implementation of the go.mozilla.org/sops/keys.MasterKey interface that encrypts and decrypts the data key using Azure Key Vault with the Azure Go SDK.
cmd
sops/codes
Package codes the exit statuses returned by the sops binary
Package codes the exit statuses returned by the sops binary
Package config provides a way to find and load SOPS configuration files
Package config provides a way to find and load SOPS configuration files
Package decrypt is the external API other Go programs can use to decrypt SOPS files.
Package decrypt is the external API other Go programs can use to decrypt SOPS files.
Package keyservice implements a gRPC API that can be used by SOPS to encrypt and decrypt the data key using remote master keys.
Package keyservice implements a gRPC API that can be used by SOPS to encrypt and decrypt the data key using remote master keys.
kms
Package kms contains an implementation of the go.mozilla.org/sops.MasterKey interface that encrypts and decrypts the data key using AWS KMS with the AWS Go SDK.
Package kms contains an implementation of the go.mozilla.org/sops.MasterKey interface that encrypts and decrypts the data key using AWS KMS with the AWS Go SDK.
Package pgp contains an implementation of the go.mozilla.org/sops.MasterKey interface that encrypts and decrypts the data key by first trying with the golang.org/x/crypto/openpgp package and if that fails, by calling the "gpg" binary.
Package pgp contains an implementation of the go.mozilla.org/sops.MasterKey interface that encrypts and decrypts the data key by first trying with the golang.org/x/crypto/openpgp package and if that fails, by calling the "gpg" binary.
Package stores acts as a layer between the internal representation of encrypted files and the encrypted files themselves.
Package stores acts as a layer between the internal representation of encrypted files and the encrypted files themselves.
ini

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
t or T : Toggle theme light dark auto