Documentation ¶
Index ¶
- Variables
- func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
- func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
- type AnnotationPayload
- func (*AnnotationPayload) Descriptor() ([]byte, []int)deprecated
- func (x *AnnotationPayload) GetAnnotationSpecId() string
- func (x *AnnotationPayload) GetClassification() *ClassificationAnnotation
- func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail
- func (x *AnnotationPayload) GetDisplayName() string
- func (x *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation
- func (x *AnnotationPayload) GetTables() *TablesAnnotation
- func (x *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation
- func (x *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation
- func (x *AnnotationPayload) GetTranslation() *TranslationAnnotation
- func (x *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation
- func (x *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation
- func (*AnnotationPayload) ProtoMessage()
- func (x *AnnotationPayload) ProtoReflect() protoreflect.Message
- func (x *AnnotationPayload) Reset()
- func (x *AnnotationPayload) String() string
- type AnnotationPayload_Classification
- type AnnotationPayload_ImageObjectDetection
- type AnnotationPayload_Tables
- type AnnotationPayload_TextExtraction
- type AnnotationPayload_TextSentiment
- type AnnotationPayload_Translation
- type AnnotationPayload_VideoClassification
- type AnnotationPayload_VideoObjectTracking
- type AnnotationSpec
- func (*AnnotationSpec) Descriptor() ([]byte, []int)deprecated
- func (x *AnnotationSpec) GetDisplayName() string
- func (x *AnnotationSpec) GetExampleCount() int32
- func (x *AnnotationSpec) GetName() string
- func (*AnnotationSpec) ProtoMessage()
- func (x *AnnotationSpec) ProtoReflect() protoreflect.Message
- func (x *AnnotationSpec) Reset()
- func (x *AnnotationSpec) String() string
- type ArrayStats
- type AutoMlClient
- type AutoMlServer
- type BatchPredictInputConfig
- func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)deprecated
- func (x *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource
- func (x *BatchPredictInputConfig) GetGcsSource() *GcsSource
- func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source
- func (*BatchPredictInputConfig) ProtoMessage()
- func (x *BatchPredictInputConfig) ProtoReflect() protoreflect.Message
- func (x *BatchPredictInputConfig) Reset()
- func (x *BatchPredictInputConfig) String() string
- type BatchPredictInputConfig_BigquerySource
- type BatchPredictInputConfig_GcsSource
- type BatchPredictOperationMetadata
- func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *BatchPredictOperationMetadata) GetInputConfig() *BatchPredictInputConfig
- func (x *BatchPredictOperationMetadata) GetOutputInfo() *BatchPredictOperationMetadata_BatchPredictOutputInfo
- func (*BatchPredictOperationMetadata) ProtoMessage()
- func (x *BatchPredictOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *BatchPredictOperationMetadata) Reset()
- func (x *BatchPredictOperationMetadata) String() string
- type BatchPredictOperationMetadata_BatchPredictOutputInfo
- func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor() ([]byte, []int)deprecated
- func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string
- func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory() string
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation
- func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage()
- func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect() protoreflect.Message
- func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset()
- func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) String() string
- type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
- type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
- type BatchPredictOutputConfig
- func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)deprecated
- func (x *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination
- func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination
- func (x *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination
- func (*BatchPredictOutputConfig) ProtoMessage()
- func (x *BatchPredictOutputConfig) ProtoReflect() protoreflect.Message
- func (x *BatchPredictOutputConfig) Reset()
- func (x *BatchPredictOutputConfig) String() string
- type BatchPredictOutputConfig_BigqueryDestination
- type BatchPredictOutputConfig_GcsDestination
- type BatchPredictRequest
- func (*BatchPredictRequest) Descriptor() ([]byte, []int)deprecated
- func (x *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig
- func (x *BatchPredictRequest) GetName() string
- func (x *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig
- func (x *BatchPredictRequest) GetParams() map[string]string
- func (*BatchPredictRequest) ProtoMessage()
- func (x *BatchPredictRequest) ProtoReflect() protoreflect.Message
- func (x *BatchPredictRequest) Reset()
- func (x *BatchPredictRequest) String() string
- type BatchPredictResult
- func (*BatchPredictResult) Descriptor() ([]byte, []int)deprecated
- func (x *BatchPredictResult) GetMetadata() map[string]string
- func (*BatchPredictResult) ProtoMessage()
- func (x *BatchPredictResult) ProtoReflect() protoreflect.Message
- func (x *BatchPredictResult) Reset()
- func (x *BatchPredictResult) String() string
- type BigQueryDestination
- func (*BigQueryDestination) Descriptor() ([]byte, []int)deprecated
- func (x *BigQueryDestination) GetOutputUri() string
- func (*BigQueryDestination) ProtoMessage()
- func (x *BigQueryDestination) ProtoReflect() protoreflect.Message
- func (x *BigQueryDestination) Reset()
- func (x *BigQueryDestination) String() string
- type BigQuerySource
- type BoundingBoxMetricsEntry
- func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)deprecated
- func (x *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry
- func (x *BoundingBoxMetricsEntry) GetIouThreshold() float32
- func (x *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32
- func (*BoundingBoxMetricsEntry) ProtoMessage()
- func (x *BoundingBoxMetricsEntry) ProtoReflect() protoreflect.Message
- func (x *BoundingBoxMetricsEntry) Reset()
- func (x *BoundingBoxMetricsEntry) String() string
- type BoundingBoxMetricsEntry_ConfidenceMetricsEntry
- func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)deprecated
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score() float32
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision() float32
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall() float32
- func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage()
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset()
- func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String() string
- type BoundingPoly
- type CategoryStats
- func (*CategoryStats) Descriptor() ([]byte, []int)deprecated
- func (x *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats
- func (*CategoryStats) ProtoMessage()
- func (x *CategoryStats) ProtoReflect() protoreflect.Message
- func (x *CategoryStats) Reset()
- func (x *CategoryStats) String() string
- type CategoryStats_SingleCategoryStats
- func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)deprecated
- func (x *CategoryStats_SingleCategoryStats) GetCount() int64
- func (x *CategoryStats_SingleCategoryStats) GetValue() string
- func (*CategoryStats_SingleCategoryStats) ProtoMessage()
- func (x *CategoryStats_SingleCategoryStats) ProtoReflect() protoreflect.Message
- func (x *CategoryStats_SingleCategoryStats) Reset()
- func (x *CategoryStats_SingleCategoryStats) String() string
- type ClassificationAnnotation
- func (*ClassificationAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *ClassificationAnnotation) GetScore() float32
- func (*ClassificationAnnotation) ProtoMessage()
- func (x *ClassificationAnnotation) ProtoReflect() protoreflect.Message
- func (x *ClassificationAnnotation) Reset()
- func (x *ClassificationAnnotation) String() string
- type ClassificationEvaluationMetrics
- func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string
- func (x *ClassificationEvaluationMetrics) GetAuPrc() float32
- func (x *ClassificationEvaluationMetrics) GetAuRoc() float32
- func (x *ClassificationEvaluationMetrics) GetBaseAuPrc() float32deprecated
- func (x *ClassificationEvaluationMetrics) GetConfidenceMetricsEntry() []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry
- func (x *ClassificationEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
- func (x *ClassificationEvaluationMetrics) GetLogLoss() float32
- func (*ClassificationEvaluationMetrics) ProtoMessage()
- func (x *ClassificationEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *ClassificationEvaluationMetrics) Reset()
- func (x *ClassificationEvaluationMetrics) String() string
- type ClassificationEvaluationMetrics_ConfidenceMetricsEntry
- func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)deprecated
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount() int64
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount() int64
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold() int32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1() float32
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount() int64
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount() int64
- func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset()
- func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String() string
- type ClassificationEvaluationMetrics_ConfusionMatrix
- func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)deprecated
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName() []string
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetRow() []*ClassificationEvaluationMetrics_ConfusionMatrix_Row
- func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage()
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect() protoreflect.Message
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix) Reset()
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix) String() string
- type ClassificationEvaluationMetrics_ConfusionMatrix_Row
- func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)deprecated
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount() []int32
- func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage()
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect() protoreflect.Message
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset()
- func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) String() string
- type ClassificationType
- func (ClassificationType) Descriptor() protoreflect.EnumDescriptor
- func (x ClassificationType) Enum() *ClassificationType
- func (ClassificationType) EnumDescriptor() ([]byte, []int)deprecated
- func (x ClassificationType) Number() protoreflect.EnumNumber
- func (x ClassificationType) String() string
- func (ClassificationType) Type() protoreflect.EnumType
- type ColumnSpec
- func (*ColumnSpec) Descriptor() ([]byte, []int)deprecated
- func (x *ColumnSpec) GetDataStats() *DataStats
- func (x *ColumnSpec) GetDataType() *DataType
- func (x *ColumnSpec) GetDisplayName() string
- func (x *ColumnSpec) GetEtag() string
- func (x *ColumnSpec) GetName() string
- func (x *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn
- func (*ColumnSpec) ProtoMessage()
- func (x *ColumnSpec) ProtoReflect() protoreflect.Message
- func (x *ColumnSpec) Reset()
- func (x *ColumnSpec) String() string
- type ColumnSpec_CorrelatedColumn
- func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)deprecated
- func (x *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string
- func (x *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats
- func (*ColumnSpec_CorrelatedColumn) ProtoMessage()
- func (x *ColumnSpec_CorrelatedColumn) ProtoReflect() protoreflect.Message
- func (x *ColumnSpec_CorrelatedColumn) Reset()
- func (x *ColumnSpec_CorrelatedColumn) String() string
- type CorrelationStats
- type CreateDatasetRequest
- func (*CreateDatasetRequest) Descriptor() ([]byte, []int)deprecated
- func (x *CreateDatasetRequest) GetDataset() *Dataset
- func (x *CreateDatasetRequest) GetParent() string
- func (*CreateDatasetRequest) ProtoMessage()
- func (x *CreateDatasetRequest) ProtoReflect() protoreflect.Message
- func (x *CreateDatasetRequest) Reset()
- func (x *CreateDatasetRequest) String() string
- type CreateModelOperationMetadata
- func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (*CreateModelOperationMetadata) ProtoMessage()
- func (x *CreateModelOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *CreateModelOperationMetadata) Reset()
- func (x *CreateModelOperationMetadata) String() string
- type CreateModelRequest
- func (*CreateModelRequest) Descriptor() ([]byte, []int)deprecated
- func (x *CreateModelRequest) GetModel() *Model
- func (x *CreateModelRequest) GetParent() string
- func (*CreateModelRequest) ProtoMessage()
- func (x *CreateModelRequest) ProtoReflect() protoreflect.Message
- func (x *CreateModelRequest) Reset()
- func (x *CreateModelRequest) String() string
- type DataStats
- func (*DataStats) Descriptor() ([]byte, []int)deprecated
- func (x *DataStats) GetArrayStats() *ArrayStats
- func (x *DataStats) GetCategoryStats() *CategoryStats
- func (x *DataStats) GetDistinctValueCount() int64
- func (x *DataStats) GetFloat64Stats() *Float64Stats
- func (x *DataStats) GetNullValueCount() int64
- func (m *DataStats) GetStats() isDataStats_Stats
- func (x *DataStats) GetStringStats() *StringStats
- func (x *DataStats) GetStructStats() *StructStats
- func (x *DataStats) GetTimestampStats() *TimestampStats
- func (x *DataStats) GetValidValueCount() int64
- func (*DataStats) ProtoMessage()
- func (x *DataStats) ProtoReflect() protoreflect.Message
- func (x *DataStats) Reset()
- func (x *DataStats) String() string
- type DataStats_ArrayStats
- type DataStats_CategoryStats
- type DataStats_Float64Stats
- type DataStats_StringStats
- type DataStats_StructStats
- type DataStats_TimestampStats
- type DataType
- func (*DataType) Descriptor() ([]byte, []int)deprecated
- func (m *DataType) GetDetails() isDataType_Details
- func (x *DataType) GetListElementType() *DataType
- func (x *DataType) GetNullable() bool
- func (x *DataType) GetStructType() *StructType
- func (x *DataType) GetTimeFormat() string
- func (x *DataType) GetTypeCode() TypeCode
- func (*DataType) ProtoMessage()
- func (x *DataType) ProtoReflect() protoreflect.Message
- func (x *DataType) Reset()
- func (x *DataType) String() string
- type DataType_ListElementType
- type DataType_StructType
- type DataType_TimeFormat
- type Dataset
- func (*Dataset) Descriptor() ([]byte, []int)deprecated
- func (x *Dataset) GetCreateTime() *timestamppb.Timestamp
- func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata
- func (x *Dataset) GetDescription() string
- func (x *Dataset) GetDisplayName() string
- func (x *Dataset) GetEtag() string
- func (x *Dataset) GetExampleCount() int32
- func (x *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata
- func (x *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata
- func (x *Dataset) GetName() string
- func (x *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata
- func (x *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata
- func (x *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata
- func (x *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata
- func (x *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata
- func (x *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata
- func (x *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata
- func (*Dataset) ProtoMessage()
- func (x *Dataset) ProtoReflect() protoreflect.Message
- func (x *Dataset) Reset()
- func (x *Dataset) String() string
- type Dataset_ImageClassificationDatasetMetadata
- type Dataset_ImageObjectDetectionDatasetMetadata
- type Dataset_TablesDatasetMetadata
- type Dataset_TextClassificationDatasetMetadata
- type Dataset_TextExtractionDatasetMetadata
- type Dataset_TextSentimentDatasetMetadata
- type Dataset_TranslationDatasetMetadata
- type Dataset_VideoClassificationDatasetMetadata
- type Dataset_VideoObjectTrackingDatasetMetadata
- type DeleteDatasetRequest
- func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)deprecated
- func (x *DeleteDatasetRequest) GetName() string
- func (*DeleteDatasetRequest) ProtoMessage()
- func (x *DeleteDatasetRequest) ProtoReflect() protoreflect.Message
- func (x *DeleteDatasetRequest) Reset()
- func (x *DeleteDatasetRequest) String() string
- type DeleteModelRequest
- func (*DeleteModelRequest) Descriptor() ([]byte, []int)deprecated
- func (x *DeleteModelRequest) GetName() string
- func (*DeleteModelRequest) ProtoMessage()
- func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message
- func (x *DeleteModelRequest) Reset()
- func (x *DeleteModelRequest) String() string
- type DeleteOperationMetadata
- type DeployModelOperationMetadata
- func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (*DeployModelOperationMetadata) ProtoMessage()
- func (x *DeployModelOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *DeployModelOperationMetadata) Reset()
- func (x *DeployModelOperationMetadata) String() string
- type DeployModelRequest
- func (*DeployModelRequest) Descriptor() ([]byte, []int)deprecated
- func (x *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata
- func (x *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata
- func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata
- func (x *DeployModelRequest) GetName() string
- func (*DeployModelRequest) ProtoMessage()
- func (x *DeployModelRequest) ProtoReflect() protoreflect.Message
- func (x *DeployModelRequest) Reset()
- func (x *DeployModelRequest) String() string
- type DeployModelRequest_ImageClassificationModelDeploymentMetadata
- type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
- type Document
- func (*Document) Descriptor() ([]byte, []int)deprecated
- func (x *Document) GetDocumentDimensions() *DocumentDimensions
- func (x *Document) GetDocumentText() *TextSnippet
- func (x *Document) GetInputConfig() *DocumentInputConfig
- func (x *Document) GetLayout() []*Document_Layout
- func (x *Document) GetPageCount() int32
- func (*Document) ProtoMessage()
- func (x *Document) ProtoReflect() protoreflect.Message
- func (x *Document) Reset()
- func (x *Document) String() string
- type DocumentDimensions
- func (*DocumentDimensions) Descriptor() ([]byte, []int)deprecated
- func (x *DocumentDimensions) GetHeight() float32
- func (x *DocumentDimensions) GetUnit() DocumentDimensions_DocumentDimensionUnit
- func (x *DocumentDimensions) GetWidth() float32
- func (*DocumentDimensions) ProtoMessage()
- func (x *DocumentDimensions) ProtoReflect() protoreflect.Message
- func (x *DocumentDimensions) Reset()
- func (x *DocumentDimensions) String() string
- type DocumentDimensions_DocumentDimensionUnit
- func (DocumentDimensions_DocumentDimensionUnit) Descriptor() protoreflect.EnumDescriptor
- func (x DocumentDimensions_DocumentDimensionUnit) Enum() *DocumentDimensions_DocumentDimensionUnit
- func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor() ([]byte, []int)deprecated
- func (x DocumentDimensions_DocumentDimensionUnit) Number() protoreflect.EnumNumber
- func (x DocumentDimensions_DocumentDimensionUnit) String() string
- func (DocumentDimensions_DocumentDimensionUnit) Type() protoreflect.EnumType
- type DocumentInputConfig
- func (*DocumentInputConfig) Descriptor() ([]byte, []int)deprecated
- func (x *DocumentInputConfig) GetGcsSource() *GcsSource
- func (*DocumentInputConfig) ProtoMessage()
- func (x *DocumentInputConfig) ProtoReflect() protoreflect.Message
- func (x *DocumentInputConfig) Reset()
- func (x *DocumentInputConfig) String() string
- type Document_Layout
- func (*Document_Layout) Descriptor() ([]byte, []int)deprecated
- func (x *Document_Layout) GetBoundingPoly() *BoundingPoly
- func (x *Document_Layout) GetPageNumber() int32
- func (x *Document_Layout) GetTextSegment() *TextSegment
- func (x *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType
- func (*Document_Layout) ProtoMessage()
- func (x *Document_Layout) ProtoReflect() protoreflect.Message
- func (x *Document_Layout) Reset()
- func (x *Document_Layout) String() string
- type Document_Layout_TextSegmentType
- func (Document_Layout_TextSegmentType) Descriptor() protoreflect.EnumDescriptor
- func (x Document_Layout_TextSegmentType) Enum() *Document_Layout_TextSegmentType
- func (Document_Layout_TextSegmentType) EnumDescriptor() ([]byte, []int)deprecated
- func (x Document_Layout_TextSegmentType) Number() protoreflect.EnumNumber
- func (x Document_Layout_TextSegmentType) String() string
- func (Document_Layout_TextSegmentType) Type() protoreflect.EnumType
- type DoubleRange
- type ExamplePayload
- func (*ExamplePayload) Descriptor() ([]byte, []int)deprecated
- func (x *ExamplePayload) GetDocument() *Document
- func (x *ExamplePayload) GetImage() *Image
- func (m *ExamplePayload) GetPayload() isExamplePayload_Payload
- func (x *ExamplePayload) GetRow() *Row
- func (x *ExamplePayload) GetTextSnippet() *TextSnippet
- func (*ExamplePayload) ProtoMessage()
- func (x *ExamplePayload) ProtoReflect() protoreflect.Message
- func (x *ExamplePayload) Reset()
- func (x *ExamplePayload) String() string
- type ExamplePayload_Document
- type ExamplePayload_Image
- type ExamplePayload_Row
- type ExamplePayload_TextSnippet
- type ExportDataOperationMetadata
- func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ExportDataOperationMetadata) GetOutputInfo() *ExportDataOperationMetadata_ExportDataOutputInfo
- func (*ExportDataOperationMetadata) ProtoMessage()
- func (x *ExportDataOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *ExportDataOperationMetadata) Reset()
- func (x *ExportDataOperationMetadata) String() string
- type ExportDataOperationMetadata_ExportDataOutputInfo
- func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor() ([]byte, []int)deprecated
- func (x *ExportDataOperationMetadata_ExportDataOutputInfo) GetBigqueryOutputDataset() string
- func (x *ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory() string
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation() isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation
- func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage()
- func (x *ExportDataOperationMetadata_ExportDataOutputInfo) ProtoReflect() protoreflect.Message
- func (x *ExportDataOperationMetadata_ExportDataOutputInfo) Reset()
- func (x *ExportDataOperationMetadata_ExportDataOutputInfo) String() string
- type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset
- type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
- type ExportDataRequest
- func (*ExportDataRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ExportDataRequest) GetName() string
- func (x *ExportDataRequest) GetOutputConfig() *OutputConfig
- func (*ExportDataRequest) ProtoMessage()
- func (x *ExportDataRequest) ProtoReflect() protoreflect.Message
- func (x *ExportDataRequest) Reset()
- func (x *ExportDataRequest) String() string
- type ExportEvaluatedExamplesOperationMetadata
- func (*ExportEvaluatedExamplesOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ExportEvaluatedExamplesOperationMetadata) GetOutputInfo() *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo
- func (*ExportEvaluatedExamplesOperationMetadata) ProtoMessage()
- func (x *ExportEvaluatedExamplesOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *ExportEvaluatedExamplesOperationMetadata) Reset()
- func (x *ExportEvaluatedExamplesOperationMetadata) String() string
- type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo
- func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Descriptor() ([]byte, []int)deprecated
- func (x *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) GetBigqueryOutputDataset() string
- func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoMessage()
- func (x *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoReflect() protoreflect.Message
- func (x *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Reset()
- func (x *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) String() string
- type ExportEvaluatedExamplesOutputConfig
- func (*ExportEvaluatedExamplesOutputConfig) Descriptor() ([]byte, []int)deprecated
- func (x *ExportEvaluatedExamplesOutputConfig) GetBigqueryDestination() *BigQueryDestination
- func (m *ExportEvaluatedExamplesOutputConfig) GetDestination() isExportEvaluatedExamplesOutputConfig_Destination
- func (*ExportEvaluatedExamplesOutputConfig) ProtoMessage()
- func (x *ExportEvaluatedExamplesOutputConfig) ProtoReflect() protoreflect.Message
- func (x *ExportEvaluatedExamplesOutputConfig) Reset()
- func (x *ExportEvaluatedExamplesOutputConfig) String() string
- type ExportEvaluatedExamplesOutputConfig_BigqueryDestination
- type ExportEvaluatedExamplesRequest
- func (*ExportEvaluatedExamplesRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ExportEvaluatedExamplesRequest) GetName() string
- func (x *ExportEvaluatedExamplesRequest) GetOutputConfig() *ExportEvaluatedExamplesOutputConfig
- func (*ExportEvaluatedExamplesRequest) ProtoMessage()
- func (x *ExportEvaluatedExamplesRequest) ProtoReflect() protoreflect.Message
- func (x *ExportEvaluatedExamplesRequest) Reset()
- func (x *ExportEvaluatedExamplesRequest) String() string
- type ExportModelOperationMetadata
- func (*ExportModelOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ExportModelOperationMetadata) GetOutputInfo() *ExportModelOperationMetadata_ExportModelOutputInfo
- func (*ExportModelOperationMetadata) ProtoMessage()
- func (x *ExportModelOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *ExportModelOperationMetadata) Reset()
- func (x *ExportModelOperationMetadata) String() string
- type ExportModelOperationMetadata_ExportModelOutputInfo
- func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor() ([]byte, []int)deprecated
- func (x *ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory() string
- func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage()
- func (x *ExportModelOperationMetadata_ExportModelOutputInfo) ProtoReflect() protoreflect.Message
- func (x *ExportModelOperationMetadata_ExportModelOutputInfo) Reset()
- func (x *ExportModelOperationMetadata_ExportModelOutputInfo) String() string
- type ExportModelRequest
- func (*ExportModelRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ExportModelRequest) GetName() string
- func (x *ExportModelRequest) GetOutputConfig() *ModelExportOutputConfig
- func (*ExportModelRequest) ProtoMessage()
- func (x *ExportModelRequest) ProtoReflect() protoreflect.Message
- func (x *ExportModelRequest) Reset()
- func (x *ExportModelRequest) String() string
- type Float64Stats
- func (*Float64Stats) Descriptor() ([]byte, []int)deprecated
- func (x *Float64Stats) GetHistogramBuckets() []*Float64Stats_HistogramBucket
- func (x *Float64Stats) GetMean() float64
- func (x *Float64Stats) GetQuantiles() []float64
- func (x *Float64Stats) GetStandardDeviation() float64
- func (*Float64Stats) ProtoMessage()
- func (x *Float64Stats) ProtoReflect() protoreflect.Message
- func (x *Float64Stats) Reset()
- func (x *Float64Stats) String() string
- type Float64Stats_HistogramBucket
- func (*Float64Stats_HistogramBucket) Descriptor() ([]byte, []int)deprecated
- func (x *Float64Stats_HistogramBucket) GetCount() int64
- func (x *Float64Stats_HistogramBucket) GetMax() float64
- func (x *Float64Stats_HistogramBucket) GetMin() float64
- func (*Float64Stats_HistogramBucket) ProtoMessage()
- func (x *Float64Stats_HistogramBucket) ProtoReflect() protoreflect.Message
- func (x *Float64Stats_HistogramBucket) Reset()
- func (x *Float64Stats_HistogramBucket) String() string
- type GcrDestination
- type GcsDestination
- type GcsSource
- type GetAnnotationSpecRequest
- func (*GetAnnotationSpecRequest) Descriptor() ([]byte, []int)deprecated
- func (x *GetAnnotationSpecRequest) GetName() string
- func (*GetAnnotationSpecRequest) ProtoMessage()
- func (x *GetAnnotationSpecRequest) ProtoReflect() protoreflect.Message
- func (x *GetAnnotationSpecRequest) Reset()
- func (x *GetAnnotationSpecRequest) String() string
- type GetColumnSpecRequest
- func (*GetColumnSpecRequest) Descriptor() ([]byte, []int)deprecated
- func (x *GetColumnSpecRequest) GetFieldMask() *fieldmaskpb.FieldMask
- func (x *GetColumnSpecRequest) GetName() string
- func (*GetColumnSpecRequest) ProtoMessage()
- func (x *GetColumnSpecRequest) ProtoReflect() protoreflect.Message
- func (x *GetColumnSpecRequest) Reset()
- func (x *GetColumnSpecRequest) String() string
- type GetDatasetRequest
- type GetModelEvaluationRequest
- func (*GetModelEvaluationRequest) Descriptor() ([]byte, []int)deprecated
- func (x *GetModelEvaluationRequest) GetName() string
- func (*GetModelEvaluationRequest) ProtoMessage()
- func (x *GetModelEvaluationRequest) ProtoReflect() protoreflect.Message
- func (x *GetModelEvaluationRequest) Reset()
- func (x *GetModelEvaluationRequest) String() string
- type GetModelRequest
- type GetTableSpecRequest
- func (*GetTableSpecRequest) Descriptor() ([]byte, []int)deprecated
- func (x *GetTableSpecRequest) GetFieldMask() *fieldmaskpb.FieldMask
- func (x *GetTableSpecRequest) GetName() string
- func (*GetTableSpecRequest) ProtoMessage()
- func (x *GetTableSpecRequest) ProtoReflect() protoreflect.Message
- func (x *GetTableSpecRequest) Reset()
- func (x *GetTableSpecRequest) String() string
- type Image
- func (*Image) Descriptor() ([]byte, []int)deprecated
- func (m *Image) GetData() isImage_Data
- func (x *Image) GetImageBytes() []byte
- func (x *Image) GetInputConfig() *InputConfig
- func (x *Image) GetThumbnailUri() string
- func (*Image) ProtoMessage()
- func (x *Image) ProtoReflect() protoreflect.Message
- func (x *Image) Reset()
- func (x *Image) String() string
- type ImageClassificationDatasetMetadata
- func (*ImageClassificationDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ImageClassificationDatasetMetadata) GetClassificationType() ClassificationType
- func (*ImageClassificationDatasetMetadata) ProtoMessage()
- func (x *ImageClassificationDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *ImageClassificationDatasetMetadata) Reset()
- func (x *ImageClassificationDatasetMetadata) String() string
- type ImageClassificationModelDeploymentMetadata
- func (*ImageClassificationModelDeploymentMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ImageClassificationModelDeploymentMetadata) GetNodeCount() int64
- func (*ImageClassificationModelDeploymentMetadata) ProtoMessage()
- func (x *ImageClassificationModelDeploymentMetadata) ProtoReflect() protoreflect.Message
- func (x *ImageClassificationModelDeploymentMetadata) Reset()
- func (x *ImageClassificationModelDeploymentMetadata) String() string
- type ImageClassificationModelMetadata
- func (*ImageClassificationModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ImageClassificationModelMetadata) GetBaseModelId() string
- func (x *ImageClassificationModelMetadata) GetModelType() string
- func (x *ImageClassificationModelMetadata) GetNodeCount() int64
- func (x *ImageClassificationModelMetadata) GetNodeQps() float64
- func (x *ImageClassificationModelMetadata) GetStopReason() string
- func (x *ImageClassificationModelMetadata) GetTrainBudget() int64
- func (x *ImageClassificationModelMetadata) GetTrainCost() int64
- func (*ImageClassificationModelMetadata) ProtoMessage()
- func (x *ImageClassificationModelMetadata) ProtoReflect() protoreflect.Message
- func (x *ImageClassificationModelMetadata) Reset()
- func (x *ImageClassificationModelMetadata) String() string
- type ImageObjectDetectionAnnotation
- func (*ImageObjectDetectionAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *ImageObjectDetectionAnnotation) GetBoundingBox() *BoundingPoly
- func (x *ImageObjectDetectionAnnotation) GetScore() float32
- func (*ImageObjectDetectionAnnotation) ProtoMessage()
- func (x *ImageObjectDetectionAnnotation) ProtoReflect() protoreflect.Message
- func (x *ImageObjectDetectionAnnotation) Reset()
- func (x *ImageObjectDetectionAnnotation) String() string
- type ImageObjectDetectionDatasetMetadata
- func (*ImageObjectDetectionDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (*ImageObjectDetectionDatasetMetadata) ProtoMessage()
- func (x *ImageObjectDetectionDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *ImageObjectDetectionDatasetMetadata) Reset()
- func (x *ImageObjectDetectionDatasetMetadata) String() string
- type ImageObjectDetectionEvaluationMetrics
- func (*ImageObjectDetectionEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
- func (x *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
- func (x *ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
- func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage()
- func (x *ImageObjectDetectionEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *ImageObjectDetectionEvaluationMetrics) Reset()
- func (x *ImageObjectDetectionEvaluationMetrics) String() string
- type ImageObjectDetectionModelDeploymentMetadata
- func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ImageObjectDetectionModelDeploymentMetadata) GetNodeCount() int64
- func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage()
- func (x *ImageObjectDetectionModelDeploymentMetadata) ProtoReflect() protoreflect.Message
- func (x *ImageObjectDetectionModelDeploymentMetadata) Reset()
- func (x *ImageObjectDetectionModelDeploymentMetadata) String() string
- type ImageObjectDetectionModelMetadata
- func (*ImageObjectDetectionModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *ImageObjectDetectionModelMetadata) GetModelType() string
- func (x *ImageObjectDetectionModelMetadata) GetNodeCount() int64
- func (x *ImageObjectDetectionModelMetadata) GetNodeQps() float64
- func (x *ImageObjectDetectionModelMetadata) GetStopReason() string
- func (x *ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours() int64
- func (x *ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours() int64
- func (*ImageObjectDetectionModelMetadata) ProtoMessage()
- func (x *ImageObjectDetectionModelMetadata) ProtoReflect() protoreflect.Message
- func (x *ImageObjectDetectionModelMetadata) Reset()
- func (x *ImageObjectDetectionModelMetadata) String() string
- type Image_ImageBytes
- type Image_InputConfig
- type ImportDataOperationMetadata
- type ImportDataRequest
- func (*ImportDataRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ImportDataRequest) GetInputConfig() *InputConfig
- func (x *ImportDataRequest) GetName() string
- func (*ImportDataRequest) ProtoMessage()
- func (x *ImportDataRequest) ProtoReflect() protoreflect.Message
- func (x *ImportDataRequest) Reset()
- func (x *ImportDataRequest) String() string
- type InputConfig
- func (*InputConfig) Descriptor() ([]byte, []int)deprecated
- func (x *InputConfig) GetBigquerySource() *BigQuerySource
- func (x *InputConfig) GetGcsSource() *GcsSource
- func (x *InputConfig) GetParams() map[string]string
- func (m *InputConfig) GetSource() isInputConfig_Source
- func (*InputConfig) ProtoMessage()
- func (x *InputConfig) ProtoReflect() protoreflect.Message
- func (x *InputConfig) Reset()
- func (x *InputConfig) String() string
- type InputConfig_BigquerySource
- type InputConfig_GcsSource
- type ListColumnSpecsRequest
- func (*ListColumnSpecsRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ListColumnSpecsRequest) GetFieldMask() *fieldmaskpb.FieldMask
- func (x *ListColumnSpecsRequest) GetFilter() string
- func (x *ListColumnSpecsRequest) GetPageSize() int32
- func (x *ListColumnSpecsRequest) GetPageToken() string
- func (x *ListColumnSpecsRequest) GetParent() string
- func (*ListColumnSpecsRequest) ProtoMessage()
- func (x *ListColumnSpecsRequest) ProtoReflect() protoreflect.Message
- func (x *ListColumnSpecsRequest) Reset()
- func (x *ListColumnSpecsRequest) String() string
- type ListColumnSpecsResponse
- func (*ListColumnSpecsResponse) Descriptor() ([]byte, []int)deprecated
- func (x *ListColumnSpecsResponse) GetColumnSpecs() []*ColumnSpec
- func (x *ListColumnSpecsResponse) GetNextPageToken() string
- func (*ListColumnSpecsResponse) ProtoMessage()
- func (x *ListColumnSpecsResponse) ProtoReflect() protoreflect.Message
- func (x *ListColumnSpecsResponse) Reset()
- func (x *ListColumnSpecsResponse) String() string
- type ListDatasetsRequest
- func (*ListDatasetsRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ListDatasetsRequest) GetFilter() string
- func (x *ListDatasetsRequest) GetPageSize() int32
- func (x *ListDatasetsRequest) GetPageToken() string
- func (x *ListDatasetsRequest) GetParent() string
- func (*ListDatasetsRequest) ProtoMessage()
- func (x *ListDatasetsRequest) ProtoReflect() protoreflect.Message
- func (x *ListDatasetsRequest) Reset()
- func (x *ListDatasetsRequest) String() string
- type ListDatasetsResponse
- func (*ListDatasetsResponse) Descriptor() ([]byte, []int)deprecated
- func (x *ListDatasetsResponse) GetDatasets() []*Dataset
- func (x *ListDatasetsResponse) GetNextPageToken() string
- func (*ListDatasetsResponse) ProtoMessage()
- func (x *ListDatasetsResponse) ProtoReflect() protoreflect.Message
- func (x *ListDatasetsResponse) Reset()
- func (x *ListDatasetsResponse) String() string
- type ListModelEvaluationsRequest
- func (*ListModelEvaluationsRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ListModelEvaluationsRequest) GetFilter() string
- func (x *ListModelEvaluationsRequest) GetPageSize() int32
- func (x *ListModelEvaluationsRequest) GetPageToken() string
- func (x *ListModelEvaluationsRequest) GetParent() string
- func (*ListModelEvaluationsRequest) ProtoMessage()
- func (x *ListModelEvaluationsRequest) ProtoReflect() protoreflect.Message
- func (x *ListModelEvaluationsRequest) Reset()
- func (x *ListModelEvaluationsRequest) String() string
- type ListModelEvaluationsResponse
- func (*ListModelEvaluationsResponse) Descriptor() ([]byte, []int)deprecated
- func (x *ListModelEvaluationsResponse) GetModelEvaluation() []*ModelEvaluation
- func (x *ListModelEvaluationsResponse) GetNextPageToken() string
- func (*ListModelEvaluationsResponse) ProtoMessage()
- func (x *ListModelEvaluationsResponse) ProtoReflect() protoreflect.Message
- func (x *ListModelEvaluationsResponse) Reset()
- func (x *ListModelEvaluationsResponse) String() string
- type ListModelsRequest
- func (*ListModelsRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ListModelsRequest) GetFilter() string
- func (x *ListModelsRequest) GetPageSize() int32
- func (x *ListModelsRequest) GetPageToken() string
- func (x *ListModelsRequest) GetParent() string
- func (*ListModelsRequest) ProtoMessage()
- func (x *ListModelsRequest) ProtoReflect() protoreflect.Message
- func (x *ListModelsRequest) Reset()
- func (x *ListModelsRequest) String() string
- type ListModelsResponse
- func (*ListModelsResponse) Descriptor() ([]byte, []int)deprecated
- func (x *ListModelsResponse) GetModel() []*Model
- func (x *ListModelsResponse) GetNextPageToken() string
- func (*ListModelsResponse) ProtoMessage()
- func (x *ListModelsResponse) ProtoReflect() protoreflect.Message
- func (x *ListModelsResponse) Reset()
- func (x *ListModelsResponse) String() string
- type ListTableSpecsRequest
- func (*ListTableSpecsRequest) Descriptor() ([]byte, []int)deprecated
- func (x *ListTableSpecsRequest) GetFieldMask() *fieldmaskpb.FieldMask
- func (x *ListTableSpecsRequest) GetFilter() string
- func (x *ListTableSpecsRequest) GetPageSize() int32
- func (x *ListTableSpecsRequest) GetPageToken() string
- func (x *ListTableSpecsRequest) GetParent() string
- func (*ListTableSpecsRequest) ProtoMessage()
- func (x *ListTableSpecsRequest) ProtoReflect() protoreflect.Message
- func (x *ListTableSpecsRequest) Reset()
- func (x *ListTableSpecsRequest) String() string
- type ListTableSpecsResponse
- func (*ListTableSpecsResponse) Descriptor() ([]byte, []int)deprecated
- func (x *ListTableSpecsResponse) GetNextPageToken() string
- func (x *ListTableSpecsResponse) GetTableSpecs() []*TableSpec
- func (*ListTableSpecsResponse) ProtoMessage()
- func (x *ListTableSpecsResponse) ProtoReflect() protoreflect.Message
- func (x *ListTableSpecsResponse) Reset()
- func (x *ListTableSpecsResponse) String() string
- type Model
- func (*Model) Descriptor() ([]byte, []int)deprecated
- func (x *Model) GetCreateTime() *timestamppb.Timestamp
- func (x *Model) GetDatasetId() string
- func (x *Model) GetDeploymentState() Model_DeploymentState
- func (x *Model) GetDisplayName() string
- func (x *Model) GetImageClassificationModelMetadata() *ImageClassificationModelMetadata
- func (x *Model) GetImageObjectDetectionModelMetadata() *ImageObjectDetectionModelMetadata
- func (m *Model) GetModelMetadata() isModel_ModelMetadata
- func (x *Model) GetName() string
- func (x *Model) GetTablesModelMetadata() *TablesModelMetadata
- func (x *Model) GetTextClassificationModelMetadata() *TextClassificationModelMetadata
- func (x *Model) GetTextExtractionModelMetadata() *TextExtractionModelMetadata
- func (x *Model) GetTextSentimentModelMetadata() *TextSentimentModelMetadata
- func (x *Model) GetTranslationModelMetadata() *TranslationModelMetadata
- func (x *Model) GetUpdateTime() *timestamppb.Timestamp
- func (x *Model) GetVideoClassificationModelMetadata() *VideoClassificationModelMetadata
- func (x *Model) GetVideoObjectTrackingModelMetadata() *VideoObjectTrackingModelMetadata
- func (*Model) ProtoMessage()
- func (x *Model) ProtoReflect() protoreflect.Message
- func (x *Model) Reset()
- func (x *Model) String() string
- type ModelEvaluation
- func (*ModelEvaluation) Descriptor() ([]byte, []int)deprecated
- func (x *ModelEvaluation) GetAnnotationSpecId() string
- func (x *ModelEvaluation) GetClassificationEvaluationMetrics() *ClassificationEvaluationMetrics
- func (x *ModelEvaluation) GetCreateTime() *timestamppb.Timestamp
- func (x *ModelEvaluation) GetDisplayName() string
- func (x *ModelEvaluation) GetEvaluatedExampleCount() int32
- func (x *ModelEvaluation) GetImageObjectDetectionEvaluationMetrics() *ImageObjectDetectionEvaluationMetrics
- func (m *ModelEvaluation) GetMetrics() isModelEvaluation_Metrics
- func (x *ModelEvaluation) GetName() string
- func (x *ModelEvaluation) GetRegressionEvaluationMetrics() *RegressionEvaluationMetrics
- func (x *ModelEvaluation) GetTextExtractionEvaluationMetrics() *TextExtractionEvaluationMetrics
- func (x *ModelEvaluation) GetTextSentimentEvaluationMetrics() *TextSentimentEvaluationMetrics
- func (x *ModelEvaluation) GetTranslationEvaluationMetrics() *TranslationEvaluationMetrics
- func (x *ModelEvaluation) GetVideoObjectTrackingEvaluationMetrics() *VideoObjectTrackingEvaluationMetrics
- func (*ModelEvaluation) ProtoMessage()
- func (x *ModelEvaluation) ProtoReflect() protoreflect.Message
- func (x *ModelEvaluation) Reset()
- func (x *ModelEvaluation) String() string
- type ModelEvaluation_ClassificationEvaluationMetrics
- type ModelEvaluation_ImageObjectDetectionEvaluationMetrics
- type ModelEvaluation_RegressionEvaluationMetrics
- type ModelEvaluation_TextExtractionEvaluationMetrics
- type ModelEvaluation_TextSentimentEvaluationMetrics
- type ModelEvaluation_TranslationEvaluationMetrics
- type ModelEvaluation_VideoObjectTrackingEvaluationMetrics
- type ModelExportOutputConfig
- func (*ModelExportOutputConfig) Descriptor() ([]byte, []int)deprecated
- func (m *ModelExportOutputConfig) GetDestination() isModelExportOutputConfig_Destination
- func (x *ModelExportOutputConfig) GetGcrDestination() *GcrDestination
- func (x *ModelExportOutputConfig) GetGcsDestination() *GcsDestination
- func (x *ModelExportOutputConfig) GetModelFormat() string
- func (x *ModelExportOutputConfig) GetParams() map[string]string
- func (*ModelExportOutputConfig) ProtoMessage()
- func (x *ModelExportOutputConfig) ProtoReflect() protoreflect.Message
- func (x *ModelExportOutputConfig) Reset()
- func (x *ModelExportOutputConfig) String() string
- type ModelExportOutputConfig_GcrDestination
- type ModelExportOutputConfig_GcsDestination
- type Model_DeploymentState
- func (Model_DeploymentState) Descriptor() protoreflect.EnumDescriptor
- func (x Model_DeploymentState) Enum() *Model_DeploymentState
- func (Model_DeploymentState) EnumDescriptor() ([]byte, []int)deprecated
- func (x Model_DeploymentState) Number() protoreflect.EnumNumber
- func (x Model_DeploymentState) String() string
- func (Model_DeploymentState) Type() protoreflect.EnumType
- type Model_ImageClassificationModelMetadata
- type Model_ImageObjectDetectionModelMetadata
- type Model_TablesModelMetadata
- type Model_TextClassificationModelMetadata
- type Model_TextExtractionModelMetadata
- type Model_TextSentimentModelMetadata
- type Model_TranslationModelMetadata
- type Model_VideoClassificationModelMetadata
- type Model_VideoObjectTrackingModelMetadata
- type NormalizedVertex
- func (*NormalizedVertex) Descriptor() ([]byte, []int)deprecated
- func (x *NormalizedVertex) GetX() float32
- func (x *NormalizedVertex) GetY() float32
- func (*NormalizedVertex) ProtoMessage()
- func (x *NormalizedVertex) ProtoReflect() protoreflect.Message
- func (x *NormalizedVertex) Reset()
- func (x *NormalizedVertex) String() string
- type OperationMetadata
- func (*OperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *OperationMetadata) GetBatchPredictDetails() *BatchPredictOperationMetadata
- func (x *OperationMetadata) GetCreateModelDetails() *CreateModelOperationMetadata
- func (x *OperationMetadata) GetCreateTime() *timestamppb.Timestamp
- func (x *OperationMetadata) GetDeleteDetails() *DeleteOperationMetadata
- func (x *OperationMetadata) GetDeployModelDetails() *DeployModelOperationMetadata
- func (m *OperationMetadata) GetDetails() isOperationMetadata_Details
- func (x *OperationMetadata) GetExportDataDetails() *ExportDataOperationMetadata
- func (x *OperationMetadata) GetExportEvaluatedExamplesDetails() *ExportEvaluatedExamplesOperationMetadata
- func (x *OperationMetadata) GetExportModelDetails() *ExportModelOperationMetadata
- func (x *OperationMetadata) GetImportDataDetails() *ImportDataOperationMetadata
- func (x *OperationMetadata) GetPartialFailures() []*status.Status
- func (x *OperationMetadata) GetProgressPercent() int32
- func (x *OperationMetadata) GetUndeployModelDetails() *UndeployModelOperationMetadata
- func (x *OperationMetadata) GetUpdateTime() *timestamppb.Timestamp
- func (*OperationMetadata) ProtoMessage()
- func (x *OperationMetadata) ProtoReflect() protoreflect.Message
- func (x *OperationMetadata) Reset()
- func (x *OperationMetadata) String() string
- type OperationMetadata_BatchPredictDetails
- type OperationMetadata_CreateModelDetails
- type OperationMetadata_DeleteDetails
- type OperationMetadata_DeployModelDetails
- type OperationMetadata_ExportDataDetails
- type OperationMetadata_ExportEvaluatedExamplesDetails
- type OperationMetadata_ExportModelDetails
- type OperationMetadata_ImportDataDetails
- type OperationMetadata_UndeployModelDetails
- type OutputConfig
- func (*OutputConfig) Descriptor() ([]byte, []int)deprecated
- func (x *OutputConfig) GetBigqueryDestination() *BigQueryDestination
- func (m *OutputConfig) GetDestination() isOutputConfig_Destination
- func (x *OutputConfig) GetGcsDestination() *GcsDestination
- func (*OutputConfig) ProtoMessage()
- func (x *OutputConfig) ProtoReflect() protoreflect.Message
- func (x *OutputConfig) Reset()
- func (x *OutputConfig) String() string
- type OutputConfig_BigqueryDestination
- type OutputConfig_GcsDestination
- type PredictRequest
- func (*PredictRequest) Descriptor() ([]byte, []int)deprecated
- func (x *PredictRequest) GetName() string
- func (x *PredictRequest) GetParams() map[string]string
- func (x *PredictRequest) GetPayload() *ExamplePayload
- func (*PredictRequest) ProtoMessage()
- func (x *PredictRequest) ProtoReflect() protoreflect.Message
- func (x *PredictRequest) Reset()
- func (x *PredictRequest) String() string
- type PredictResponse
- func (*PredictResponse) Descriptor() ([]byte, []int)deprecated
- func (x *PredictResponse) GetMetadata() map[string]string
- func (x *PredictResponse) GetPayload() []*AnnotationPayload
- func (x *PredictResponse) GetPreprocessedInput() *ExamplePayload
- func (*PredictResponse) ProtoMessage()
- func (x *PredictResponse) ProtoReflect() protoreflect.Message
- func (x *PredictResponse) Reset()
- func (x *PredictResponse) String() string
- type PredictionServiceClient
- type PredictionServiceServer
- type RegressionEvaluationMetrics
- func (*RegressionEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *RegressionEvaluationMetrics) GetMeanAbsoluteError() float32
- func (x *RegressionEvaluationMetrics) GetMeanAbsolutePercentageError() float32
- func (x *RegressionEvaluationMetrics) GetRSquared() float32
- func (x *RegressionEvaluationMetrics) GetRootMeanSquaredError() float32
- func (x *RegressionEvaluationMetrics) GetRootMeanSquaredLogError() float32
- func (*RegressionEvaluationMetrics) ProtoMessage()
- func (x *RegressionEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *RegressionEvaluationMetrics) Reset()
- func (x *RegressionEvaluationMetrics) String() string
- type Row
- type StringStats
- type StringStats_UnigramStats
- func (*StringStats_UnigramStats) Descriptor() ([]byte, []int)deprecated
- func (x *StringStats_UnigramStats) GetCount() int64
- func (x *StringStats_UnigramStats) GetValue() string
- func (*StringStats_UnigramStats) ProtoMessage()
- func (x *StringStats_UnigramStats) ProtoReflect() protoreflect.Message
- func (x *StringStats_UnigramStats) Reset()
- func (x *StringStats_UnigramStats) String() string
- type StructStats
- type StructType
- type TableSpec
- func (*TableSpec) Descriptor() ([]byte, []int)deprecated
- func (x *TableSpec) GetColumnCount() int64
- func (x *TableSpec) GetEtag() string
- func (x *TableSpec) GetInputConfigs() []*InputConfig
- func (x *TableSpec) GetName() string
- func (x *TableSpec) GetRowCount() int64
- func (x *TableSpec) GetTimeColumnSpecId() string
- func (x *TableSpec) GetValidRowCount() int64
- func (*TableSpec) ProtoMessage()
- func (x *TableSpec) ProtoReflect() protoreflect.Message
- func (x *TableSpec) Reset()
- func (x *TableSpec) String() string
- type TablesAnnotation
- func (*TablesAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *TablesAnnotation) GetBaselineScore() float32
- func (x *TablesAnnotation) GetPredictionInterval() *DoubleRange
- func (x *TablesAnnotation) GetScore() float32
- func (x *TablesAnnotation) GetTablesModelColumnInfo() []*TablesModelColumnInfo
- func (x *TablesAnnotation) GetValue() *structpb.Value
- func (*TablesAnnotation) ProtoMessage()
- func (x *TablesAnnotation) ProtoReflect() protoreflect.Message
- func (x *TablesAnnotation) Reset()
- func (x *TablesAnnotation) String() string
- type TablesDatasetMetadata
- func (*TablesDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TablesDatasetMetadata) GetMlUseColumnSpecId() string
- func (x *TablesDatasetMetadata) GetPrimaryTableSpecId() string
- func (x *TablesDatasetMetadata) GetStatsUpdateTime() *timestamppb.Timestamp
- func (x *TablesDatasetMetadata) GetTargetColumnCorrelations() map[string]*CorrelationStats
- func (x *TablesDatasetMetadata) GetTargetColumnSpecId() string
- func (x *TablesDatasetMetadata) GetWeightColumnSpecId() string
- func (*TablesDatasetMetadata) ProtoMessage()
- func (x *TablesDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *TablesDatasetMetadata) Reset()
- func (x *TablesDatasetMetadata) String() string
- type TablesModelColumnInfo
- func (*TablesModelColumnInfo) Descriptor() ([]byte, []int)deprecated
- func (x *TablesModelColumnInfo) GetColumnDisplayName() string
- func (x *TablesModelColumnInfo) GetColumnSpecName() string
- func (x *TablesModelColumnInfo) GetFeatureImportance() float32
- func (*TablesModelColumnInfo) ProtoMessage()
- func (x *TablesModelColumnInfo) ProtoReflect() protoreflect.Message
- func (x *TablesModelColumnInfo) Reset()
- func (x *TablesModelColumnInfo) String() string
- type TablesModelMetadata
- func (*TablesModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (m *TablesModelMetadata) GetAdditionalOptimizationObjectiveConfig() isTablesModelMetadata_AdditionalOptimizationObjectiveConfig
- func (x *TablesModelMetadata) GetDisableEarlyStopping() bool
- func (x *TablesModelMetadata) GetInputFeatureColumnSpecs() []*ColumnSpec
- func (x *TablesModelMetadata) GetOptimizationObjective() string
- func (x *TablesModelMetadata) GetOptimizationObjectivePrecisionValue() float32
- func (x *TablesModelMetadata) GetOptimizationObjectiveRecallValue() float32
- func (x *TablesModelMetadata) GetTablesModelColumnInfo() []*TablesModelColumnInfo
- func (x *TablesModelMetadata) GetTargetColumnSpec() *ColumnSpec
- func (x *TablesModelMetadata) GetTrainBudgetMilliNodeHours() int64
- func (x *TablesModelMetadata) GetTrainCostMilliNodeHours() int64
- func (*TablesModelMetadata) ProtoMessage()
- func (x *TablesModelMetadata) ProtoReflect() protoreflect.Message
- func (x *TablesModelMetadata) Reset()
- func (x *TablesModelMetadata) String() string
- type TablesModelMetadata_OptimizationObjectivePrecisionValue
- type TablesModelMetadata_OptimizationObjectiveRecallValue
- type TextClassificationDatasetMetadata
- func (*TextClassificationDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TextClassificationDatasetMetadata) GetClassificationType() ClassificationType
- func (*TextClassificationDatasetMetadata) ProtoMessage()
- func (x *TextClassificationDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *TextClassificationDatasetMetadata) Reset()
- func (x *TextClassificationDatasetMetadata) String() string
- type TextClassificationModelMetadata
- func (*TextClassificationModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TextClassificationModelMetadata) GetClassificationType() ClassificationType
- func (*TextClassificationModelMetadata) ProtoMessage()
- func (x *TextClassificationModelMetadata) ProtoReflect() protoreflect.Message
- func (x *TextClassificationModelMetadata) Reset()
- func (x *TextClassificationModelMetadata) String() string
- type TextExtractionAnnotation
- func (*TextExtractionAnnotation) Descriptor() ([]byte, []int)deprecated
- func (m *TextExtractionAnnotation) GetAnnotation() isTextExtractionAnnotation_Annotation
- func (x *TextExtractionAnnotation) GetScore() float32
- func (x *TextExtractionAnnotation) GetTextSegment() *TextSegment
- func (*TextExtractionAnnotation) ProtoMessage()
- func (x *TextExtractionAnnotation) ProtoReflect() protoreflect.Message
- func (x *TextExtractionAnnotation) Reset()
- func (x *TextExtractionAnnotation) String() string
- type TextExtractionAnnotation_TextSegment
- type TextExtractionDatasetMetadata
- func (*TextExtractionDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (*TextExtractionDatasetMetadata) ProtoMessage()
- func (x *TextExtractionDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *TextExtractionDatasetMetadata) Reset()
- func (x *TextExtractionDatasetMetadata) String() string
- type TextExtractionEvaluationMetrics
- func (*TextExtractionEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *TextExtractionEvaluationMetrics) GetAuPrc() float32
- func (x *TextExtractionEvaluationMetrics) GetConfidenceMetricsEntries() []*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
- func (*TextExtractionEvaluationMetrics) ProtoMessage()
- func (x *TextExtractionEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *TextExtractionEvaluationMetrics) Reset()
- func (x *TextExtractionEvaluationMetrics) String() string
- type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
- func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)deprecated
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
- func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Reset()
- func (x *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) String() string
- type TextExtractionModelMetadata
- func (*TextExtractionModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TextExtractionModelMetadata) GetModelHint() string
- func (*TextExtractionModelMetadata) ProtoMessage()
- func (x *TextExtractionModelMetadata) ProtoReflect() protoreflect.Message
- func (x *TextExtractionModelMetadata) Reset()
- func (x *TextExtractionModelMetadata) String() string
- type TextSegment
- func (*TextSegment) Descriptor() ([]byte, []int)deprecated
- func (x *TextSegment) GetContent() string
- func (x *TextSegment) GetEndOffset() int64
- func (x *TextSegment) GetStartOffset() int64
- func (*TextSegment) ProtoMessage()
- func (x *TextSegment) ProtoReflect() protoreflect.Message
- func (x *TextSegment) Reset()
- func (x *TextSegment) String() string
- type TextSentimentAnnotation
- func (*TextSentimentAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *TextSentimentAnnotation) GetSentiment() int32
- func (*TextSentimentAnnotation) ProtoMessage()
- func (x *TextSentimentAnnotation) ProtoReflect() protoreflect.Message
- func (x *TextSentimentAnnotation) Reset()
- func (x *TextSentimentAnnotation) String() string
- type TextSentimentDatasetMetadata
- func (*TextSentimentDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TextSentimentDatasetMetadata) GetSentimentMax() int32
- func (*TextSentimentDatasetMetadata) ProtoMessage()
- func (x *TextSentimentDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *TextSentimentDatasetMetadata) Reset()
- func (x *TextSentimentDatasetMetadata) String() string
- type TextSentimentEvaluationMetrics
- func (*TextSentimentEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *TextSentimentEvaluationMetrics) GetAnnotationSpecId() []stringdeprecated
- func (x *TextSentimentEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
- func (x *TextSentimentEvaluationMetrics) GetF1Score() float32
- func (x *TextSentimentEvaluationMetrics) GetLinearKappa() float32
- func (x *TextSentimentEvaluationMetrics) GetMeanAbsoluteError() float32
- func (x *TextSentimentEvaluationMetrics) GetMeanSquaredError() float32
- func (x *TextSentimentEvaluationMetrics) GetPrecision() float32
- func (x *TextSentimentEvaluationMetrics) GetQuadraticKappa() float32
- func (x *TextSentimentEvaluationMetrics) GetRecall() float32
- func (*TextSentimentEvaluationMetrics) ProtoMessage()
- func (x *TextSentimentEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *TextSentimentEvaluationMetrics) Reset()
- func (x *TextSentimentEvaluationMetrics) String() string
- type TextSentimentModelMetadata
- type TextSnippet
- func (*TextSnippet) Descriptor() ([]byte, []int)deprecated
- func (x *TextSnippet) GetContent() string
- func (x *TextSnippet) GetContentUri() string
- func (x *TextSnippet) GetMimeType() string
- func (*TextSnippet) ProtoMessage()
- func (x *TextSnippet) ProtoReflect() protoreflect.Message
- func (x *TextSnippet) Reset()
- func (x *TextSnippet) String() string
- type TimeSegment
- func (*TimeSegment) Descriptor() ([]byte, []int)deprecated
- func (x *TimeSegment) GetEndTimeOffset() *durationpb.Duration
- func (x *TimeSegment) GetStartTimeOffset() *durationpb.Duration
- func (*TimeSegment) ProtoMessage()
- func (x *TimeSegment) ProtoReflect() protoreflect.Message
- func (x *TimeSegment) Reset()
- func (x *TimeSegment) String() string
- type TimestampStats
- func (*TimestampStats) Descriptor() ([]byte, []int)deprecated
- func (x *TimestampStats) GetGranularStats() map[string]*TimestampStats_GranularStats
- func (*TimestampStats) ProtoMessage()
- func (x *TimestampStats) ProtoReflect() protoreflect.Message
- func (x *TimestampStats) Reset()
- func (x *TimestampStats) String() string
- type TimestampStats_GranularStats
- func (*TimestampStats_GranularStats) Descriptor() ([]byte, []int)deprecated
- func (x *TimestampStats_GranularStats) GetBuckets() map[int32]int64
- func (*TimestampStats_GranularStats) ProtoMessage()
- func (x *TimestampStats_GranularStats) ProtoReflect() protoreflect.Message
- func (x *TimestampStats_GranularStats) Reset()
- func (x *TimestampStats_GranularStats) String() string
- type TranslationAnnotation
- func (*TranslationAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *TranslationAnnotation) GetTranslatedContent() *TextSnippet
- func (*TranslationAnnotation) ProtoMessage()
- func (x *TranslationAnnotation) ProtoReflect() protoreflect.Message
- func (x *TranslationAnnotation) Reset()
- func (x *TranslationAnnotation) String() string
- type TranslationDatasetMetadata
- func (*TranslationDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TranslationDatasetMetadata) GetSourceLanguageCode() string
- func (x *TranslationDatasetMetadata) GetTargetLanguageCode() string
- func (*TranslationDatasetMetadata) ProtoMessage()
- func (x *TranslationDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *TranslationDatasetMetadata) Reset()
- func (x *TranslationDatasetMetadata) String() string
- type TranslationEvaluationMetrics
- func (*TranslationEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *TranslationEvaluationMetrics) GetBaseBleuScore() float64
- func (x *TranslationEvaluationMetrics) GetBleuScore() float64
- func (*TranslationEvaluationMetrics) ProtoMessage()
- func (x *TranslationEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *TranslationEvaluationMetrics) Reset()
- func (x *TranslationEvaluationMetrics) String() string
- type TranslationModelMetadata
- func (*TranslationModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *TranslationModelMetadata) GetBaseModel() string
- func (x *TranslationModelMetadata) GetSourceLanguageCode() string
- func (x *TranslationModelMetadata) GetTargetLanguageCode() string
- func (*TranslationModelMetadata) ProtoMessage()
- func (x *TranslationModelMetadata) ProtoReflect() protoreflect.Message
- func (x *TranslationModelMetadata) Reset()
- func (x *TranslationModelMetadata) String() string
- type TypeCode
- type UndeployModelOperationMetadata
- func (*UndeployModelOperationMetadata) Descriptor() ([]byte, []int)deprecated
- func (*UndeployModelOperationMetadata) ProtoMessage()
- func (x *UndeployModelOperationMetadata) ProtoReflect() protoreflect.Message
- func (x *UndeployModelOperationMetadata) Reset()
- func (x *UndeployModelOperationMetadata) String() string
- type UndeployModelRequest
- func (*UndeployModelRequest) Descriptor() ([]byte, []int)deprecated
- func (x *UndeployModelRequest) GetName() string
- func (*UndeployModelRequest) ProtoMessage()
- func (x *UndeployModelRequest) ProtoReflect() protoreflect.Message
- func (x *UndeployModelRequest) Reset()
- func (x *UndeployModelRequest) String() string
- type UnimplementedAutoMlServer
- func (*UnimplementedAutoMlServer) CreateDataset(context.Context, *CreateDatasetRequest) (*Dataset, error)
- func (*UnimplementedAutoMlServer) CreateModel(context.Context, *CreateModelRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) DeleteModel(context.Context, *DeleteModelRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) DeployModel(context.Context, *DeployModelRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) ExportData(context.Context, *ExportDataRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) ExportEvaluatedExamples(context.Context, *ExportEvaluatedExamplesRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) ExportModel(context.Context, *ExportModelRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error)
- func (*UnimplementedAutoMlServer) GetColumnSpec(context.Context, *GetColumnSpecRequest) (*ColumnSpec, error)
- func (*UnimplementedAutoMlServer) GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error)
- func (*UnimplementedAutoMlServer) GetModel(context.Context, *GetModelRequest) (*Model, error)
- func (*UnimplementedAutoMlServer) GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error)
- func (*UnimplementedAutoMlServer) GetTableSpec(context.Context, *GetTableSpecRequest) (*TableSpec, error)
- func (*UnimplementedAutoMlServer) ImportData(context.Context, *ImportDataRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) ListColumnSpecs(context.Context, *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error)
- func (*UnimplementedAutoMlServer) ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error)
- func (*UnimplementedAutoMlServer) ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
- func (*UnimplementedAutoMlServer) ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
- func (*UnimplementedAutoMlServer) ListTableSpecs(context.Context, *ListTableSpecsRequest) (*ListTableSpecsResponse, error)
- func (*UnimplementedAutoMlServer) UndeployModel(context.Context, *UndeployModelRequest) (*longrunningpb.Operation, error)
- func (*UnimplementedAutoMlServer) UpdateColumnSpec(context.Context, *UpdateColumnSpecRequest) (*ColumnSpec, error)
- func (*UnimplementedAutoMlServer) UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error)
- func (*UnimplementedAutoMlServer) UpdateTableSpec(context.Context, *UpdateTableSpecRequest) (*TableSpec, error)
- type UnimplementedPredictionServiceServer
- type UpdateColumnSpecRequest
- func (*UpdateColumnSpecRequest) Descriptor() ([]byte, []int)deprecated
- func (x *UpdateColumnSpecRequest) GetColumnSpec() *ColumnSpec
- func (x *UpdateColumnSpecRequest) GetUpdateMask() *fieldmaskpb.FieldMask
- func (*UpdateColumnSpecRequest) ProtoMessage()
- func (x *UpdateColumnSpecRequest) ProtoReflect() protoreflect.Message
- func (x *UpdateColumnSpecRequest) Reset()
- func (x *UpdateColumnSpecRequest) String() string
- type UpdateDatasetRequest
- func (*UpdateDatasetRequest) Descriptor() ([]byte, []int)deprecated
- func (x *UpdateDatasetRequest) GetDataset() *Dataset
- func (x *UpdateDatasetRequest) GetUpdateMask() *fieldmaskpb.FieldMask
- func (*UpdateDatasetRequest) ProtoMessage()
- func (x *UpdateDatasetRequest) ProtoReflect() protoreflect.Message
- func (x *UpdateDatasetRequest) Reset()
- func (x *UpdateDatasetRequest) String() string
- type UpdateTableSpecRequest
- func (*UpdateTableSpecRequest) Descriptor() ([]byte, []int)deprecated
- func (x *UpdateTableSpecRequest) GetTableSpec() *TableSpec
- func (x *UpdateTableSpecRequest) GetUpdateMask() *fieldmaskpb.FieldMask
- func (*UpdateTableSpecRequest) ProtoMessage()
- func (x *UpdateTableSpecRequest) ProtoReflect() protoreflect.Message
- func (x *UpdateTableSpecRequest) Reset()
- func (x *UpdateTableSpecRequest) String() string
- type VideoClassificationAnnotation
- func (*VideoClassificationAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *VideoClassificationAnnotation) GetClassificationAnnotation() *ClassificationAnnotation
- func (x *VideoClassificationAnnotation) GetTimeSegment() *TimeSegment
- func (x *VideoClassificationAnnotation) GetType() string
- func (*VideoClassificationAnnotation) ProtoMessage()
- func (x *VideoClassificationAnnotation) ProtoReflect() protoreflect.Message
- func (x *VideoClassificationAnnotation) Reset()
- func (x *VideoClassificationAnnotation) String() string
- type VideoClassificationDatasetMetadata
- func (*VideoClassificationDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (*VideoClassificationDatasetMetadata) ProtoMessage()
- func (x *VideoClassificationDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *VideoClassificationDatasetMetadata) Reset()
- func (x *VideoClassificationDatasetMetadata) String() string
- type VideoClassificationModelMetadata
- func (*VideoClassificationModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (*VideoClassificationModelMetadata) ProtoMessage()
- func (x *VideoClassificationModelMetadata) ProtoReflect() protoreflect.Message
- func (x *VideoClassificationModelMetadata) Reset()
- func (x *VideoClassificationModelMetadata) String() string
- type VideoObjectTrackingAnnotation
- func (*VideoObjectTrackingAnnotation) Descriptor() ([]byte, []int)deprecated
- func (x *VideoObjectTrackingAnnotation) GetBoundingBox() *BoundingPoly
- func (x *VideoObjectTrackingAnnotation) GetInstanceId() string
- func (x *VideoObjectTrackingAnnotation) GetScore() float32
- func (x *VideoObjectTrackingAnnotation) GetTimeOffset() *durationpb.Duration
- func (*VideoObjectTrackingAnnotation) ProtoMessage()
- func (x *VideoObjectTrackingAnnotation) ProtoReflect() protoreflect.Message
- func (x *VideoObjectTrackingAnnotation) Reset()
- func (x *VideoObjectTrackingAnnotation) String() string
- type VideoObjectTrackingDatasetMetadata
- func (*VideoObjectTrackingDatasetMetadata) Descriptor() ([]byte, []int)deprecated
- func (*VideoObjectTrackingDatasetMetadata) ProtoMessage()
- func (x *VideoObjectTrackingDatasetMetadata) ProtoReflect() protoreflect.Message
- func (x *VideoObjectTrackingDatasetMetadata) Reset()
- func (x *VideoObjectTrackingDatasetMetadata) String() string
- type VideoObjectTrackingEvaluationMetrics
- func (*VideoObjectTrackingEvaluationMetrics) Descriptor() ([]byte, []int)deprecated
- func (x *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
- func (x *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
- func (x *VideoObjectTrackingEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
- func (x *VideoObjectTrackingEvaluationMetrics) GetEvaluatedFrameCount() int32
- func (*VideoObjectTrackingEvaluationMetrics) ProtoMessage()
- func (x *VideoObjectTrackingEvaluationMetrics) ProtoReflect() protoreflect.Message
- func (x *VideoObjectTrackingEvaluationMetrics) Reset()
- func (x *VideoObjectTrackingEvaluationMetrics) String() string
- type VideoObjectTrackingModelMetadata
- func (*VideoObjectTrackingModelMetadata) Descriptor() ([]byte, []int)deprecated
- func (*VideoObjectTrackingModelMetadata) ProtoMessage()
- func (x *VideoObjectTrackingModelMetadata) ProtoReflect() protoreflect.Message
- func (x *VideoObjectTrackingModelMetadata) Reset()
- func (x *VideoObjectTrackingModelMetadata) String() string
Constants ¶
This section is empty.
Variables ¶
var ( ClassificationType_name = map[int32]string{ 0: "CLASSIFICATION_TYPE_UNSPECIFIED", 1: "MULTICLASS", 2: "MULTILABEL", } ClassificationType_value = map[string]int32{ "CLASSIFICATION_TYPE_UNSPECIFIED": 0, "MULTICLASS": 1, "MULTILABEL": 2, } )
Enum value maps for ClassificationType.
var ( DocumentDimensions_DocumentDimensionUnit_name = map[int32]string{ 0: "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED", 1: "INCH", 2: "CENTIMETER", 3: "POINT", } DocumentDimensions_DocumentDimensionUnit_value = map[string]int32{ "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED": 0, "INCH": 1, "CENTIMETER": 2, "POINT": 3, } )
Enum value maps for DocumentDimensions_DocumentDimensionUnit.
var ( Document_Layout_TextSegmentType_name = map[int32]string{ 0: "TEXT_SEGMENT_TYPE_UNSPECIFIED", 1: "TOKEN", 2: "PARAGRAPH", 3: "FORM_FIELD", 4: "FORM_FIELD_NAME", 5: "FORM_FIELD_CONTENTS", 6: "TABLE", 7: "TABLE_HEADER", 8: "TABLE_ROW", 9: "TABLE_CELL", } Document_Layout_TextSegmentType_value = map[string]int32{ "TEXT_SEGMENT_TYPE_UNSPECIFIED": 0, "TOKEN": 1, "PARAGRAPH": 2, "FORM_FIELD": 3, "FORM_FIELD_NAME": 4, "FORM_FIELD_CONTENTS": 5, "TABLE": 6, "TABLE_HEADER": 7, "TABLE_ROW": 8, "TABLE_CELL": 9, } )
Enum value maps for Document_Layout_TextSegmentType.
var ( TypeCode_name = map[int32]string{ 0: "TYPE_CODE_UNSPECIFIED", 3: "FLOAT64", 4: "TIMESTAMP", 6: "STRING", 8: "ARRAY", 9: "STRUCT", 10: "CATEGORY", } TypeCode_value = map[string]int32{ "TYPE_CODE_UNSPECIFIED": 0, "FLOAT64": 3, "TIMESTAMP": 4, "STRING": 6, "ARRAY": 8, "STRUCT": 9, "CATEGORY": 10, } )
Enum value maps for TypeCode.
var ( Model_DeploymentState_name = map[int32]string{ 0: "DEPLOYMENT_STATE_UNSPECIFIED", 1: "DEPLOYED", 2: "UNDEPLOYED", } Model_DeploymentState_value = map[string]int32{ "DEPLOYMENT_STATE_UNSPECIFIED": 0, "DEPLOYED": 1, "UNDEPLOYED": 2, } )
Enum value maps for Model_DeploymentState.
var File_google_cloud_automl_v1beta1_annotation_payload_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_annotation_spec_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_classification_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_column_spec_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_data_items_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_data_stats_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_data_types_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_dataset_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_detection_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_geometry_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_image_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_io_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_model_evaluation_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_model_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_operations_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_prediction_service_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_ranges_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_regression_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_service_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_table_spec_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_tables_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_temporal_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_text_extraction_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_text_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_text_segment_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_text_sentiment_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_translation_proto protoreflect.FileDescriptor
var File_google_cloud_automl_v1beta1_video_proto protoreflect.FileDescriptor
Functions ¶
func RegisterAutoMlServer ¶
func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
func RegisterPredictionServiceServer ¶
func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
Types ¶
type AnnotationPayload ¶
type AnnotationPayload struct { // Output only . Additional information about the annotation // specific to the AutoML domain. // // Types that are assignable to Detail: // // *AnnotationPayload_Translation // *AnnotationPayload_Classification // *AnnotationPayload_ImageObjectDetection // *AnnotationPayload_VideoClassification // *AnnotationPayload_VideoObjectTracking // *AnnotationPayload_TextExtraction // *AnnotationPayload_TextSentiment // *AnnotationPayload_Tables Detail isAnnotationPayload_Detail `protobuf_oneof:"detail"` // Output only . The resource ID of the annotation spec that // this annotation pertains to. The annotation spec comes from either an // ancestor dataset, or the dataset that was used to train the model in use. AnnotationSpecId string `protobuf:"bytes,1,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // Output only. The value of // [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] // when the model was trained. Because this field returns a value at model // training time, for different models trained using the same dataset, the // returned value could be different as model owner could update the // `display_name` between any two model training. DisplayName string `protobuf:"bytes,5,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // contains filtered or unexported fields }
Contains annotation information that is relevant to AutoML.
func (*AnnotationPayload) Descriptor
deprecated
func (*AnnotationPayload) Descriptor() ([]byte, []int)
Deprecated: Use AnnotationPayload.ProtoReflect.Descriptor instead.
func (*AnnotationPayload) GetAnnotationSpecId ¶
func (x *AnnotationPayload) GetAnnotationSpecId() string
func (*AnnotationPayload) GetClassification ¶
func (x *AnnotationPayload) GetClassification() *ClassificationAnnotation
func (*AnnotationPayload) GetDetail ¶
func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail
func (*AnnotationPayload) GetDisplayName ¶
func (x *AnnotationPayload) GetDisplayName() string
func (*AnnotationPayload) GetImageObjectDetection ¶
func (x *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation
func (*AnnotationPayload) GetTables ¶
func (x *AnnotationPayload) GetTables() *TablesAnnotation
func (*AnnotationPayload) GetTextExtraction ¶
func (x *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation
func (*AnnotationPayload) GetTextSentiment ¶
func (x *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation
func (*AnnotationPayload) GetTranslation ¶
func (x *AnnotationPayload) GetTranslation() *TranslationAnnotation
func (*AnnotationPayload) GetVideoClassification ¶
func (x *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation
func (*AnnotationPayload) GetVideoObjectTracking ¶
func (x *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation
func (*AnnotationPayload) ProtoMessage ¶
func (*AnnotationPayload) ProtoMessage()
func (*AnnotationPayload) ProtoReflect ¶
func (x *AnnotationPayload) ProtoReflect() protoreflect.Message
func (*AnnotationPayload) Reset ¶
func (x *AnnotationPayload) Reset()
func (*AnnotationPayload) String ¶
func (x *AnnotationPayload) String() string
type AnnotationPayload_Classification ¶
type AnnotationPayload_Classification struct { // Annotation details for content or image classification. Classification *ClassificationAnnotation `protobuf:"bytes,3,opt,name=classification,proto3,oneof"` }
type AnnotationPayload_ImageObjectDetection ¶
type AnnotationPayload_ImageObjectDetection struct { // Annotation details for image object detection. ImageObjectDetection *ImageObjectDetectionAnnotation `protobuf:"bytes,4,opt,name=image_object_detection,json=imageObjectDetection,proto3,oneof"` }
type AnnotationPayload_Tables ¶
type AnnotationPayload_Tables struct { // Annotation details for Tables. Tables *TablesAnnotation `protobuf:"bytes,10,opt,name=tables,proto3,oneof"` }
type AnnotationPayload_TextExtraction ¶
type AnnotationPayload_TextExtraction struct { // Annotation details for text extraction. TextExtraction *TextExtractionAnnotation `protobuf:"bytes,6,opt,name=text_extraction,json=textExtraction,proto3,oneof"` }
type AnnotationPayload_TextSentiment ¶
type AnnotationPayload_TextSentiment struct { // Annotation details for text sentiment. TextSentiment *TextSentimentAnnotation `protobuf:"bytes,7,opt,name=text_sentiment,json=textSentiment,proto3,oneof"` }
type AnnotationPayload_Translation ¶
type AnnotationPayload_Translation struct { // Annotation details for translation. Translation *TranslationAnnotation `protobuf:"bytes,2,opt,name=translation,proto3,oneof"` }
type AnnotationPayload_VideoClassification ¶
type AnnotationPayload_VideoClassification struct { // Annotation details for video classification. // Returned for Video Classification predictions. VideoClassification *VideoClassificationAnnotation `protobuf:"bytes,9,opt,name=video_classification,json=videoClassification,proto3,oneof"` }
type AnnotationPayload_VideoObjectTracking ¶
type AnnotationPayload_VideoObjectTracking struct { // Annotation details for video object tracking. VideoObjectTracking *VideoObjectTrackingAnnotation `protobuf:"bytes,8,opt,name=video_object_tracking,json=videoObjectTracking,proto3,oneof"` }
type AnnotationSpec ¶
type AnnotationSpec struct { // Output only. Resource name of the annotation spec. // Form: // // 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}' Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The name of the annotation spec to show in the interface. The name can be // up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`. DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. The number of examples in the parent dataset // labeled by the annotation spec. ExampleCount int32 `protobuf:"varint,9,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"` // contains filtered or unexported fields }
A definition of an annotation spec.
func (*AnnotationSpec) Descriptor
deprecated
func (*AnnotationSpec) Descriptor() ([]byte, []int)
Deprecated: Use AnnotationSpec.ProtoReflect.Descriptor instead.
func (*AnnotationSpec) GetDisplayName ¶
func (x *AnnotationSpec) GetDisplayName() string
func (*AnnotationSpec) GetExampleCount ¶
func (x *AnnotationSpec) GetExampleCount() int32
func (*AnnotationSpec) GetName ¶
func (x *AnnotationSpec) GetName() string
func (*AnnotationSpec) ProtoMessage ¶
func (*AnnotationSpec) ProtoMessage()
func (*AnnotationSpec) ProtoReflect ¶
func (x *AnnotationSpec) ProtoReflect() protoreflect.Message
func (*AnnotationSpec) Reset ¶
func (x *AnnotationSpec) Reset()
func (*AnnotationSpec) String ¶
func (x *AnnotationSpec) String() string
type ArrayStats ¶
type ArrayStats struct { // Stats of all the values of all arrays, as if they were a single long // series of data. The type depends on the element type of the array. MemberStats *DataStats `protobuf:"bytes,2,opt,name=member_stats,json=memberStats,proto3" json:"member_stats,omitempty"` // contains filtered or unexported fields }
The data statistics of a series of ARRAY values.
func (*ArrayStats) Descriptor
deprecated
func (*ArrayStats) Descriptor() ([]byte, []int)
Deprecated: Use ArrayStats.ProtoReflect.Descriptor instead.
func (*ArrayStats) GetMemberStats ¶
func (x *ArrayStats) GetMemberStats() *DataStats
func (*ArrayStats) ProtoMessage ¶
func (*ArrayStats) ProtoMessage()
func (*ArrayStats) ProtoReflect ¶
func (x *ArrayStats) ProtoReflect() protoreflect.Message
func (*ArrayStats) Reset ¶
func (x *ArrayStats) Reset()
func (*ArrayStats) String ¶
func (x *ArrayStats) String() string
type AutoMlClient ¶
type AutoMlClient interface { // Creates a dataset. CreateDataset(ctx context.Context, in *CreateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error) // Gets a dataset. GetDataset(ctx context.Context, in *GetDatasetRequest, opts ...grpc.CallOption) (*Dataset, error) // Lists datasets in a project. ListDatasets(ctx context.Context, in *ListDatasetsRequest, opts ...grpc.CallOption) (*ListDatasetsResponse, error) // Updates a dataset. UpdateDataset(ctx context.Context, in *UpdateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error) // Deletes a dataset and all of its contents. // Returns empty response in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteDataset(ctx context.Context, in *DeleteDatasetRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Imports data into a dataset. // For Tables this method can only be called on an empty Dataset. // // For Tables: // * A // [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params] // // parameter must be explicitly set. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ImportData(ctx context.Context, in *ImportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Exports dataset's data to the provided output location. // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportData(ctx context.Context, in *ExportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Gets an annotation spec. GetAnnotationSpec(ctx context.Context, in *GetAnnotationSpecRequest, opts ...grpc.CallOption) (*AnnotationSpec, error) // Gets a table spec. GetTableSpec(ctx context.Context, in *GetTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error) // Lists table specs in a dataset. ListTableSpecs(ctx context.Context, in *ListTableSpecsRequest, opts ...grpc.CallOption) (*ListTableSpecsResponse, error) // Updates a table spec. UpdateTableSpec(ctx context.Context, in *UpdateTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error) // Gets a column spec. GetColumnSpec(ctx context.Context, in *GetColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error) // Lists column specs in a table spec. ListColumnSpecs(ctx context.Context, in *ListColumnSpecsRequest, opts ...grpc.CallOption) (*ListColumnSpecsResponse, error) // Updates a column spec. UpdateColumnSpec(ctx context.Context, in *UpdateColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error) // Creates a model. // Returns a Model in the [response][google.longrunning.Operation.response] // field when it completes. // When you create a model, several model evaluations are created for it: // a global evaluation, and one evaluation for each annotation spec. CreateModel(ctx context.Context, in *CreateModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Gets a model. GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error) // Lists models. ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error) // Deletes a model. // Returns `google.protobuf.Empty` in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Deploys a model. If a model is already deployed, deploying it with the // same parameters has no effect. Deploying with different parametrs // (as e.g. changing // // [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number]) // // will reset the deployment state without pausing the model's availability. // // Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage // deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. DeployModel(ctx context.Context, in *DeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Undeploys a model. If the model is not deployed this method has no effect. // // Only applicable for Text Classification, Image Object Detection and Tables; // all other domains manage deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. UndeployModel(ctx context.Context, in *UndeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Exports a trained, "export-able", model to a user specified Google Cloud // Storage location. A model is considered export-able if and only if it has // an export format defined for it in // // [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig]. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportModel(ctx context.Context, in *ExportModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Exports examples on which the model was evaluated (i.e. which were in the // TEST set of the dataset the model was created from), together with their // ground truth annotations and the annotations created (predicted) by the // model. // The examples, ground truth and predictions are exported in the state // they were at the moment the model was evaluated. // // This export is available only for 30 days since the model evaluation is // created. // // Currently only available for Tables. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportEvaluatedExamples(ctx context.Context, in *ExportEvaluatedExamplesRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error) // Gets a model evaluation. GetModelEvaluation(ctx context.Context, in *GetModelEvaluationRequest, opts ...grpc.CallOption) (*ModelEvaluation, error) // Lists model evaluations. ListModelEvaluations(ctx context.Context, in *ListModelEvaluationsRequest, opts ...grpc.CallOption) (*ListModelEvaluationsResponse, error) }
AutoMlClient is the client API for AutoMl service.
For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
func NewAutoMlClient ¶
func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient
type AutoMlServer ¶
type AutoMlServer interface { // Creates a dataset. CreateDataset(context.Context, *CreateDatasetRequest) (*Dataset, error) // Gets a dataset. GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error) // Lists datasets in a project. ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error) // Updates a dataset. UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error) // Deletes a dataset and all of its contents. // Returns empty response in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunningpb.Operation, error) // Imports data into a dataset. // For Tables this method can only be called on an empty Dataset. // // For Tables: // * A // [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params] // // parameter must be explicitly set. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ImportData(context.Context, *ImportDataRequest) (*longrunningpb.Operation, error) // Exports dataset's data to the provided output location. // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportData(context.Context, *ExportDataRequest) (*longrunningpb.Operation, error) // Gets an annotation spec. GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error) // Gets a table spec. GetTableSpec(context.Context, *GetTableSpecRequest) (*TableSpec, error) // Lists table specs in a dataset. ListTableSpecs(context.Context, *ListTableSpecsRequest) (*ListTableSpecsResponse, error) // Updates a table spec. UpdateTableSpec(context.Context, *UpdateTableSpecRequest) (*TableSpec, error) // Gets a column spec. GetColumnSpec(context.Context, *GetColumnSpecRequest) (*ColumnSpec, error) // Lists column specs in a table spec. ListColumnSpecs(context.Context, *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error) // Updates a column spec. UpdateColumnSpec(context.Context, *UpdateColumnSpecRequest) (*ColumnSpec, error) // Creates a model. // Returns a Model in the [response][google.longrunning.Operation.response] // field when it completes. // When you create a model, several model evaluations are created for it: // a global evaluation, and one evaluation for each annotation spec. CreateModel(context.Context, *CreateModelRequest) (*longrunningpb.Operation, error) // Gets a model. GetModel(context.Context, *GetModelRequest) (*Model, error) // Lists models. ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error) // Deletes a model. // Returns `google.protobuf.Empty` in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteModel(context.Context, *DeleteModelRequest) (*longrunningpb.Operation, error) // Deploys a model. If a model is already deployed, deploying it with the // same parameters has no effect. Deploying with different parametrs // (as e.g. changing // // [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number]) // // will reset the deployment state without pausing the model's availability. // // Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage // deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. DeployModel(context.Context, *DeployModelRequest) (*longrunningpb.Operation, error) // Undeploys a model. If the model is not deployed this method has no effect. // // Only applicable for Text Classification, Image Object Detection and Tables; // all other domains manage deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. UndeployModel(context.Context, *UndeployModelRequest) (*longrunningpb.Operation, error) // Exports a trained, "export-able", model to a user specified Google Cloud // Storage location. A model is considered export-able if and only if it has // an export format defined for it in // // [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig]. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportModel(context.Context, *ExportModelRequest) (*longrunningpb.Operation, error) // Exports examples on which the model was evaluated (i.e. which were in the // TEST set of the dataset the model was created from), together with their // ground truth annotations and the annotations created (predicted) by the // model. // The examples, ground truth and predictions are exported in the state // they were at the moment the model was evaluated. // // This export is available only for 30 days since the model evaluation is // created. // // Currently only available for Tables. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportEvaluatedExamples(context.Context, *ExportEvaluatedExamplesRequest) (*longrunningpb.Operation, error) // Gets a model evaluation. GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error) // Lists model evaluations. ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error) }
AutoMlServer is the server API for AutoMl service.
type BatchPredictInputConfig ¶
type BatchPredictInputConfig struct { // Required. The source of the input. // // Types that are assignable to Source: // // *BatchPredictInputConfig_GcsSource // *BatchPredictInputConfig_BigquerySource Source isBatchPredictInputConfig_Source `protobuf_oneof:"source"` // contains filtered or unexported fields }
Input configuration for BatchPredict Action.
The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf
For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf
For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }
For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].
GCS case: CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted. For FORECASTING
[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
all columns having
[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
type will be ignored. First three sample rows of a CSV file: "First Name","Last Name","Dob","Addresses"
"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
BigQuery case: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted. For FORECASTING
[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
all columns having
[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
type will be ignored. Definitions: GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi". TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes ("") TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed and it means the end of the example. Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.
func (*BatchPredictInputConfig) Descriptor
deprecated
func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictInputConfig.ProtoReflect.Descriptor instead.
func (*BatchPredictInputConfig) GetBigquerySource ¶
func (x *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource
func (*BatchPredictInputConfig) GetGcsSource ¶
func (x *BatchPredictInputConfig) GetGcsSource() *GcsSource
func (*BatchPredictInputConfig) GetSource ¶
func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source
func (*BatchPredictInputConfig) ProtoMessage ¶
func (*BatchPredictInputConfig) ProtoMessage()
func (*BatchPredictInputConfig) ProtoReflect ¶
func (x *BatchPredictInputConfig) ProtoReflect() protoreflect.Message
func (*BatchPredictInputConfig) Reset ¶
func (x *BatchPredictInputConfig) Reset()
func (*BatchPredictInputConfig) String ¶
func (x *BatchPredictInputConfig) String() string
type BatchPredictInputConfig_BigquerySource ¶
type BatchPredictInputConfig_BigquerySource struct { // The BigQuery location for the input content. BigquerySource *BigQuerySource `protobuf:"bytes,2,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"` }
type BatchPredictInputConfig_GcsSource ¶
type BatchPredictInputConfig_GcsSource struct { // The Google Cloud Storage location for the input content. GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"` }
type BatchPredictOperationMetadata ¶
type BatchPredictOperationMetadata struct { // Output only. The input config that was given upon starting this // batch predict operation. InputConfig *BatchPredictInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"` // Output only. Information further describing this batch predict's output. OutputInfo *BatchPredictOperationMetadata_BatchPredictOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"` // contains filtered or unexported fields }
Details of BatchPredict operation.
func (*BatchPredictOperationMetadata) Descriptor
deprecated
func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOperationMetadata.ProtoReflect.Descriptor instead.
func (*BatchPredictOperationMetadata) GetInputConfig ¶
func (x *BatchPredictOperationMetadata) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictOperationMetadata) GetOutputInfo ¶
func (x *BatchPredictOperationMetadata) GetOutputInfo() *BatchPredictOperationMetadata_BatchPredictOutputInfo
func (*BatchPredictOperationMetadata) ProtoMessage ¶
func (*BatchPredictOperationMetadata) ProtoMessage()
func (*BatchPredictOperationMetadata) ProtoReflect ¶
func (x *BatchPredictOperationMetadata) ProtoReflect() protoreflect.Message
func (*BatchPredictOperationMetadata) Reset ¶
func (x *BatchPredictOperationMetadata) Reset()
func (*BatchPredictOperationMetadata) String ¶
func (x *BatchPredictOperationMetadata) String() string
type BatchPredictOperationMetadata_BatchPredictOutputInfo ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo struct { // The output location into which prediction output is written. // // Types that are assignable to OutputLocation: // // *BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory // *BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset OutputLocation isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation `protobuf_oneof:"output_location"` // contains filtered or unexported fields }
Further describes this batch predict's output. Supplements
BatchPredictOutputConfig[google.cloud.automl.v1beta1.BatchPredictOutputConfig].
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor
deprecated
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOperationMetadata_BatchPredictOutputInfo.ProtoReflect.Descriptor instead.
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset ¶
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory ¶
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage ¶
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect ¶
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect() protoreflect.Message
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset ¶
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) String ¶
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) String() string
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset struct { // The path of the BigQuery dataset created, in bq://projectId.bqDatasetId // format, into which the prediction output is written. BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"` }
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory struct { // The full path of the Google Cloud Storage directory created, into which // the prediction output is written. GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"` }
type BatchPredictOutputConfig ¶
type BatchPredictOutputConfig struct { // Required. The destination of the output. // // Types that are assignable to Destination: // // *BatchPredictOutputConfig_GcsDestination // *BatchPredictOutputConfig_BigqueryDestination Destination isBatchPredictOutputConfig_Destination `protobuf_oneof:"destination"` // contains filtered or unexported fields }
Output configuration for BatchPredict Action.
As destination the ¶
[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-<model-display-name>-<timestamp-of-prediction-call>", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for.
- For Image Classification: In the created directory files `image_classification_1.jsonl`, `image_classification_2.jsonl`,...,`image_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`fields. * For Image Object Detection: In the created directory files `image_object_detection_1.jsonl`, `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have image_object_detection detail populated. A single image will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any image failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`fields. * For Video Classification: In the created directory a video_classification.csv file, and a .JSON file per each video classification requested in the input (i.e. each line in given CSV(s)), will be created. The format of video_classification.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for the video time segment the file is assigned to in the video_classification.csv. All AnnotationPayload protos will have video_classification field set, and will be sorted by video_classification.type field (note that the returned types are governed by `classifaction_types` parameter in [PredictService.BatchPredictRequest.params][]). * For Video Object Tracking: In the created directory a video_object_tracking.csv file will be created, and multiple files video_object_trackinng_1.json, video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is the number of requests in the input (i.e. the number of lines in given CSV(s)). The format of video_object_tracking.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for each frame of the video time segment the file is assigned to in video_object_tracking.csv. All AnnotationPayload protos will have video_object_tracking field set. * For Text Classification: In the created directory files `text_classification_1.jsonl`, `text_classification_2.jsonl`,...,`text_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`. * For Text Sentiment: In the created directory files `text_sentiment_1.jsonl`, `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have text_sentiment detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`. * For Text Extraction: In the created directory files `text_extraction_1.jsonl`, `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. The contents of these .JSONL file(s) depend on whether the input used inline text, or documents. If input was inline, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request text snippet's "id" (if specified), followed by input text snippet, and a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated. A single text snippet will be listed only once with all its annotations, and its annotations will never be split across files. If input used documents, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request document proto, followed by its OCR-ed representation in the form of a text snippet, finally followed by a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated and refer, via their indices, to the OCR-ed text snippet. A single document (and its text snippet) will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps either the "id" : "<id_value>" (in case of inline) or the document proto (in case of document) but here followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`. * For Tables: Output depends on whether
[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
or
[bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]
is set (either is allowed). GCS case: In the created directory files `tables_1.csv`, `tables_2.csv`,..., `tables_N.csv` will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION
[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
Each .csv file will contain a header, listing all columns'
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
given on input followed by M target column names in the format of
"<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target
value>_score" where M is the number of distinct target values, i.e. number of distinct values in the target column of the table used to train the model. Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, columns having the corresponding prediction [scores][google.cloud.automl.v1beta1.TablesAnnotation.score]. For REGRESSION and FORECASTING
[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
Each .csv file will contain a header, listing all columns' [display_name-s][google.cloud.automl.v1beta1.display_name] given on input followed by the predicted target column with name in the format of
"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additional `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be created (N depends on total number of failed rows). These files will have analogous format as `tables_*.csv`, but always with a single target column having
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a JSON string, and containing only `code` and `message`. BigQuery case:
[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
pointing to a BigQuery project must be set. In the given project a new dataset will be created with name `prediction_<model-display-name>_<timestamp-of-prediction-call>` where <model-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two tables will be created, `predictions`, and `errors`. The `predictions` table's column names will be the input columns'
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
followed by the target column with name in the format of
"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
The input feature columns will contain the respective values of successfully predicted rows, with the target column having an ARRAY of
[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
represented as STRUCT-s, containing [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation]. The `errors` table contains rows for which the prediction has failed, it has analogous input columns while the target column name is in the format of
"errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",
and as a value has
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a STRUCT, and containing only `code` and `message`.
func (*BatchPredictOutputConfig) Descriptor
deprecated
func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOutputConfig.ProtoReflect.Descriptor instead.
func (*BatchPredictOutputConfig) GetBigqueryDestination ¶
func (x *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination
func (*BatchPredictOutputConfig) GetDestination ¶
func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination
func (*BatchPredictOutputConfig) GetGcsDestination ¶
func (x *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination
func (*BatchPredictOutputConfig) ProtoMessage ¶
func (*BatchPredictOutputConfig) ProtoMessage()
func (*BatchPredictOutputConfig) ProtoReflect ¶
func (x *BatchPredictOutputConfig) ProtoReflect() protoreflect.Message
func (*BatchPredictOutputConfig) Reset ¶
func (x *BatchPredictOutputConfig) Reset()
func (*BatchPredictOutputConfig) String ¶
func (x *BatchPredictOutputConfig) String() string
type BatchPredictOutputConfig_BigqueryDestination ¶
type BatchPredictOutputConfig_BigqueryDestination struct { // The BigQuery location where the output is to be written to. BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"` }
type BatchPredictOutputConfig_GcsDestination ¶
type BatchPredictOutputConfig_GcsDestination struct { // The Google Cloud Storage location of the directory where the output is to // be written to. GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"` }
type BatchPredictRequest ¶
type BatchPredictRequest struct { // Required. Name of the model requested to serve the batch prediction. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The input configuration for batch prediction. InputConfig *BatchPredictInputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"` // Required. The Configuration specifying where output predictions should // be written. OutputConfig *BatchPredictOutputConfig `protobuf:"bytes,4,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"` // Required. Additional domain-specific parameters for the predictions, any string must // be up to 25000 characters long. // // * For Text Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for a text snippet, it will only produce results // that have at least this confidence score. The default is 0.5. // // * For Image Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for an image, it will only produce results that // have at least this confidence score. The default is 0.5. // // * For Image Object Detection: // // `score_threshold` - (float) When Model detects objects on the image, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be produced per image. Default is 100, the // requested value may be limited by server. // // * For Video Classification : // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for a video, it will only produce results that // have at least this confidence score. The default is 0.5. // `segment_classification` - (boolean) Set to true to request // segment-level classification. AutoML Video Intelligence returns // labels and their confidence scores for the entire segment of the // video that user specified in the request configuration. // The default is "true". // `shot_classification` - (boolean) Set to true to request shot-level // classification. AutoML Video Intelligence determines the boundaries // for each camera shot in the entire segment of the video that user // specified in the request configuration. AutoML Video Intelligence // then returns labels and their confidence scores for each detected // shot, along with the start and end time of the shot. // WARNING: Model evaluation is not done for this classification type, // the quality of it depends on training data, but there are no metrics // provided to describe that quality. The default is "false". // `1s_interval_classification` - (boolean) Set to true to request // classification for a video at one-second intervals. AutoML Video // Intelligence returns labels and their confidence scores for each // second of the entire segment of the video that user specified in the // request configuration. // WARNING: Model evaluation is not done for this classification // type, the quality of it depends on training data, but there are no // metrics provided to describe that quality. The default is // "false". // // * For Tables: // // feature_imp<span>ortan</span>ce - (boolean) Whether feature importance // should be populated in the returned TablesAnnotations. The // default is false. // // * For Video Object Tracking: // // `score_threshold` - (float) When Model detects objects on video frames, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be returned per frame. Default is 100, the requested // value may be limited by server. // `min_bounding_box_size` - (float) Only bounding boxes with shortest edge // at least that long as a relative value of video frame size will be // returned. Value in 0 to 1 range. Default is 0. Params map[string]string `` /* 153-byte string literal not displayed */ // contains filtered or unexported fields }
Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
func (*BatchPredictRequest) Descriptor
deprecated
func (*BatchPredictRequest) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictRequest.ProtoReflect.Descriptor instead.
func (*BatchPredictRequest) GetInputConfig ¶
func (x *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictRequest) GetName ¶
func (x *BatchPredictRequest) GetName() string
func (*BatchPredictRequest) GetOutputConfig ¶
func (x *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig
func (*BatchPredictRequest) GetParams ¶
func (x *BatchPredictRequest) GetParams() map[string]string
func (*BatchPredictRequest) ProtoMessage ¶
func (*BatchPredictRequest) ProtoMessage()
func (*BatchPredictRequest) ProtoReflect ¶
func (x *BatchPredictRequest) ProtoReflect() protoreflect.Message
func (*BatchPredictRequest) Reset ¶
func (x *BatchPredictRequest) Reset()
func (*BatchPredictRequest) String ¶
func (x *BatchPredictRequest) String() string
type BatchPredictResult ¶
type BatchPredictResult struct { // Additional domain-specific prediction response metadata. // // - For Image Object Detection: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // image could have been returned. // // - For Video Object Tracking: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // frame could have been returned. Metadata map[string]string `` /* 157-byte string literal not displayed */ // contains filtered or unexported fields }
Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
func (*BatchPredictResult) Descriptor
deprecated
func (*BatchPredictResult) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictResult.ProtoReflect.Descriptor instead.
func (*BatchPredictResult) GetMetadata ¶
func (x *BatchPredictResult) GetMetadata() map[string]string
func (*BatchPredictResult) ProtoMessage ¶
func (*BatchPredictResult) ProtoMessage()
func (*BatchPredictResult) ProtoReflect ¶
func (x *BatchPredictResult) ProtoReflect() protoreflect.Message
func (*BatchPredictResult) Reset ¶
func (x *BatchPredictResult) Reset()
func (*BatchPredictResult) String ¶
func (x *BatchPredictResult) String() string
type BigQueryDestination ¶
type BigQueryDestination struct { // Required. BigQuery URI to a project, up to 2000 characters long. // Accepted forms: // * BigQuery path e.g. bq://projectId OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"` // contains filtered or unexported fields }
The BigQuery location for the output content.
func (*BigQueryDestination) Descriptor
deprecated
func (*BigQueryDestination) Descriptor() ([]byte, []int)
Deprecated: Use BigQueryDestination.ProtoReflect.Descriptor instead.
func (*BigQueryDestination) GetOutputUri ¶
func (x *BigQueryDestination) GetOutputUri() string
func (*BigQueryDestination) ProtoMessage ¶
func (*BigQueryDestination) ProtoMessage()
func (*BigQueryDestination) ProtoReflect ¶
func (x *BigQueryDestination) ProtoReflect() protoreflect.Message
func (*BigQueryDestination) Reset ¶
func (x *BigQueryDestination) Reset()
func (*BigQueryDestination) String ¶
func (x *BigQueryDestination) String() string
type BigQuerySource ¶
type BigQuerySource struct { // Required. BigQuery URI to a table, up to 2000 characters long. // Accepted forms: // * BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId InputUri string `protobuf:"bytes,1,opt,name=input_uri,json=inputUri,proto3" json:"input_uri,omitempty"` // contains filtered or unexported fields }
The BigQuery location for the input content.
func (*BigQuerySource) Descriptor
deprecated
func (*BigQuerySource) Descriptor() ([]byte, []int)
Deprecated: Use BigQuerySource.ProtoReflect.Descriptor instead.
func (*BigQuerySource) GetInputUri ¶
func (x *BigQuerySource) GetInputUri() string
func (*BigQuerySource) ProtoMessage ¶
func (*BigQuerySource) ProtoMessage()
func (*BigQuerySource) ProtoReflect ¶
func (x *BigQuerySource) ProtoReflect() protoreflect.Message
func (*BigQuerySource) Reset ¶
func (x *BigQuerySource) Reset()
func (*BigQuerySource) String ¶
func (x *BigQuerySource) String() string
type BoundingBoxMetricsEntry ¶
type BoundingBoxMetricsEntry struct { // Output only. The intersection-over-union threshold value used to compute // this metrics entry. IouThreshold float32 `protobuf:"fixed32,1,opt,name=iou_threshold,json=iouThreshold,proto3" json:"iou_threshold,omitempty"` // Output only. The mean average precision, most often close to au_prc. MeanAveragePrecision float32 `protobuf:"fixed32,2,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"` // Output only. Metrics for each label-match confidence_threshold from // 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is // derived from them. ConfidenceMetricsEntries []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry `` /* 135-byte string literal not displayed */ // contains filtered or unexported fields }
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
func (*BoundingBoxMetricsEntry) Descriptor
deprecated
func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use BoundingBoxMetricsEntry.ProtoReflect.Descriptor instead.
func (*BoundingBoxMetricsEntry) GetConfidenceMetricsEntries ¶
func (x *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry
func (*BoundingBoxMetricsEntry) GetIouThreshold ¶
func (x *BoundingBoxMetricsEntry) GetIouThreshold() float32
func (*BoundingBoxMetricsEntry) GetMeanAveragePrecision ¶
func (x *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32
func (*BoundingBoxMetricsEntry) ProtoMessage ¶
func (*BoundingBoxMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry) ProtoReflect ¶
func (x *BoundingBoxMetricsEntry) ProtoReflect() protoreflect.Message
func (*BoundingBoxMetricsEntry) Reset ¶
func (x *BoundingBoxMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry) String ¶
func (x *BoundingBoxMetricsEntry) String() string
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry ¶
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry struct { // Output only. The confidence threshold value used to compute the metrics. ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"` // Output only. Recall under the given confidence threshold. Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"` // Output only. Precision under the given confidence threshold. Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"` // Output only. The harmonic mean of recall and precision. F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"` // contains filtered or unexported fields }
Metrics for a single confidence threshold.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor
deprecated
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use BoundingBoxMetricsEntry_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage ¶
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String ¶
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String() string
type BoundingPoly ¶
type BoundingPoly struct { // Output only . The bounding polygon normalized vertices. NormalizedVertices []*NormalizedVertex `protobuf:"bytes,2,rep,name=normalized_vertices,json=normalizedVertices,proto3" json:"normalized_vertices,omitempty"` // contains filtered or unexported fields }
A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
func (*BoundingPoly) Descriptor
deprecated
func (*BoundingPoly) Descriptor() ([]byte, []int)
Deprecated: Use BoundingPoly.ProtoReflect.Descriptor instead.
func (*BoundingPoly) GetNormalizedVertices ¶
func (x *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex
func (*BoundingPoly) ProtoMessage ¶
func (*BoundingPoly) ProtoMessage()
func (*BoundingPoly) ProtoReflect ¶
func (x *BoundingPoly) ProtoReflect() protoreflect.Message
func (*BoundingPoly) Reset ¶
func (x *BoundingPoly) Reset()
func (*BoundingPoly) String ¶
func (x *BoundingPoly) String() string
type CategoryStats ¶
type CategoryStats struct { // The statistics of the top 20 CATEGORY values, ordered by // // [count][google.cloud.automl.v1beta1.CategoryStats.SingleCategoryStats.count]. TopCategoryStats []*CategoryStats_SingleCategoryStats `protobuf:"bytes,1,rep,name=top_category_stats,json=topCategoryStats,proto3" json:"top_category_stats,omitempty"` // contains filtered or unexported fields }
The data statistics of a series of CATEGORY values.
func (*CategoryStats) Descriptor
deprecated
func (*CategoryStats) Descriptor() ([]byte, []int)
Deprecated: Use CategoryStats.ProtoReflect.Descriptor instead.
func (*CategoryStats) GetTopCategoryStats ¶
func (x *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats
func (*CategoryStats) ProtoMessage ¶
func (*CategoryStats) ProtoMessage()
func (*CategoryStats) ProtoReflect ¶
func (x *CategoryStats) ProtoReflect() protoreflect.Message
func (*CategoryStats) Reset ¶
func (x *CategoryStats) Reset()
func (*CategoryStats) String ¶
func (x *CategoryStats) String() string
type CategoryStats_SingleCategoryStats ¶
type CategoryStats_SingleCategoryStats struct { // The CATEGORY value. Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"` // The number of occurrences of this value in the series. Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"` // contains filtered or unexported fields }
The statistics of a single CATEGORY value.
func (*CategoryStats_SingleCategoryStats) Descriptor
deprecated
func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)
Deprecated: Use CategoryStats_SingleCategoryStats.ProtoReflect.Descriptor instead.
func (*CategoryStats_SingleCategoryStats) GetCount ¶
func (x *CategoryStats_SingleCategoryStats) GetCount() int64
func (*CategoryStats_SingleCategoryStats) GetValue ¶
func (x *CategoryStats_SingleCategoryStats) GetValue() string
func (*CategoryStats_SingleCategoryStats) ProtoMessage ¶
func (*CategoryStats_SingleCategoryStats) ProtoMessage()
func (*CategoryStats_SingleCategoryStats) ProtoReflect ¶
func (x *CategoryStats_SingleCategoryStats) ProtoReflect() protoreflect.Message
func (*CategoryStats_SingleCategoryStats) Reset ¶
func (x *CategoryStats_SingleCategoryStats) Reset()
func (*CategoryStats_SingleCategoryStats) String ¶
func (x *CategoryStats_SingleCategoryStats) String() string
type ClassificationAnnotation ¶
type ClassificationAnnotation struct { // Output only. A confidence estimate between 0.0 and 1.0. A higher value // means greater confidence that the annotation is positive. If a user // approves an annotation as negative or positive, the score value remains // unchanged. If a user creates an annotation, the score is 0 for negative or // 1 for positive. Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"` // contains filtered or unexported fields }
Contains annotation details specific to classification.
func (*ClassificationAnnotation) Descriptor
deprecated
func (*ClassificationAnnotation) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationAnnotation.ProtoReflect.Descriptor instead.
func (*ClassificationAnnotation) GetScore ¶
func (x *ClassificationAnnotation) GetScore() float32
func (*ClassificationAnnotation) ProtoMessage ¶
func (*ClassificationAnnotation) ProtoMessage()
func (*ClassificationAnnotation) ProtoReflect ¶
func (x *ClassificationAnnotation) ProtoReflect() protoreflect.Message
func (*ClassificationAnnotation) Reset ¶
func (x *ClassificationAnnotation) Reset()
func (*ClassificationAnnotation) String ¶
func (x *ClassificationAnnotation) String() string
type ClassificationEvaluationMetrics ¶
type ClassificationEvaluationMetrics struct { // Output only. The Area Under Precision-Recall Curve metric. Micro-averaged // for the overall evaluation. AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"` // Output only. The Area Under Precision-Recall Curve metric based on priors. // Micro-averaged for the overall evaluation. // Deprecated. // // Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/classification.proto. BaseAuPrc float32 `protobuf:"fixed32,2,opt,name=base_au_prc,json=baseAuPrc,proto3" json:"base_au_prc,omitempty"` // Output only. The Area Under Receiver Operating Characteristic curve metric. // Micro-averaged for the overall evaluation. AuRoc float32 `protobuf:"fixed32,6,opt,name=au_roc,json=auRoc,proto3" json:"au_roc,omitempty"` // Output only. The Log Loss metric. LogLoss float32 `protobuf:"fixed32,7,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"` // Output only. Metrics for each confidence_threshold in // 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and // position_threshold = INT32_MAX_VALUE. // ROC and precision-recall curves, and other aggregated metrics are derived // from them. The confidence metrics entries may also be supplied for // additional values of position_threshold, but from these no aggregated // metrics are computed. ConfidenceMetricsEntry []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry `` /* 129-byte string literal not displayed */ // Output only. Confusion matrix of the evaluation. // Only set for MULTICLASS classification problems where number // of labels is no more than 10. // Only set for model level evaluation, not for evaluation per label. ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,4,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"` // Output only. The annotation spec ids used for this evaluation. AnnotationSpecId []string `protobuf:"bytes,5,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // contains filtered or unexported fields }
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.
func (*ClassificationEvaluationMetrics) Descriptor
deprecated
func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics) GetAnnotationSpecId ¶
func (x *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics) GetAuPrc ¶
func (x *ClassificationEvaluationMetrics) GetAuPrc() float32
func (*ClassificationEvaluationMetrics) GetAuRoc ¶
func (x *ClassificationEvaluationMetrics) GetAuRoc() float32
func (*ClassificationEvaluationMetrics) GetBaseAuPrc
deprecated
func (x *ClassificationEvaluationMetrics) GetBaseAuPrc() float32
Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/classification.proto.
func (*ClassificationEvaluationMetrics) GetConfidenceMetricsEntry ¶
func (x *ClassificationEvaluationMetrics) GetConfidenceMetricsEntry() []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry
func (*ClassificationEvaluationMetrics) GetConfusionMatrix ¶
func (x *ClassificationEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
func (*ClassificationEvaluationMetrics) GetLogLoss ¶
func (x *ClassificationEvaluationMetrics) GetLogLoss() float32
func (*ClassificationEvaluationMetrics) ProtoMessage ¶
func (*ClassificationEvaluationMetrics) ProtoMessage()
func (*ClassificationEvaluationMetrics) ProtoReflect ¶
func (x *ClassificationEvaluationMetrics) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics) Reset ¶
func (x *ClassificationEvaluationMetrics) Reset()
func (*ClassificationEvaluationMetrics) String ¶
func (x *ClassificationEvaluationMetrics) String() string
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry ¶
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry struct { // Output only. Metrics are computed with an assumption that the model // never returns predictions with score lower than this value. ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"` // Output only. Metrics are computed with an assumption that the model // always returns at most this many predictions (ordered by their score, // descendingly), but they all still need to meet the confidence_threshold. PositionThreshold int32 `protobuf:"varint,14,opt,name=position_threshold,json=positionThreshold,proto3" json:"position_threshold,omitempty"` // Output only. Recall (True Positive Rate) for the given confidence // threshold. Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"` // Output only. Precision for the given confidence threshold. Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"` // Output only. False Positive Rate for the given confidence threshold. FalsePositiveRate float32 `protobuf:"fixed32,8,opt,name=false_positive_rate,json=falsePositiveRate,proto3" json:"false_positive_rate,omitempty"` // Output only. The harmonic mean of recall and precision. F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"` // Output only. The Recall (True Positive Rate) when only considering the // label that has the highest prediction score and not below the confidence // threshold for each example. RecallAt1 float32 `protobuf:"fixed32,5,opt,name=recall_at1,json=recallAt1,proto3" json:"recall_at1,omitempty"` // Output only. The precision when only considering the label that has the // highest prediction score and not below the confidence threshold for each // example. PrecisionAt1 float32 `protobuf:"fixed32,6,opt,name=precision_at1,json=precisionAt1,proto3" json:"precision_at1,omitempty"` // Output only. The False Positive Rate when only considering the label that // has the highest prediction score and not below the confidence threshold // for each example. FalsePositiveRateAt1 float32 `` /* 127-byte string literal not displayed */ // Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1]. F1ScoreAt1 float32 `protobuf:"fixed32,7,opt,name=f1_score_at1,json=f1ScoreAt1,proto3" json:"f1_score_at1,omitempty"` // Output only. The number of model created labels that match a ground truth // label. TruePositiveCount int64 `protobuf:"varint,10,opt,name=true_positive_count,json=truePositiveCount,proto3" json:"true_positive_count,omitempty"` // Output only. The number of model created labels that do not match a // ground truth label. FalsePositiveCount int64 `protobuf:"varint,11,opt,name=false_positive_count,json=falsePositiveCount,proto3" json:"false_positive_count,omitempty"` // Output only. The number of ground truth labels that are not matched // by a model created label. FalseNegativeCount int64 `protobuf:"varint,12,opt,name=false_negative_count,json=falseNegativeCount,proto3" json:"false_negative_count,omitempty"` // Output only. The number of labels that were not created by the model, // but if they would, they would not match a ground truth label. TrueNegativeCount int64 `protobuf:"varint,13,opt,name=true_negative_count,json=trueNegativeCount,proto3" json:"true_negative_count,omitempty"` // contains filtered or unexported fields }
Metrics for a single confidence threshold.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor
deprecated
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1 ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1 ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold() int32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1 ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1 ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage ¶
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String ¶
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String() string
type ClassificationEvaluationMetrics_ConfusionMatrix ¶
type ClassificationEvaluationMetrics_ConfusionMatrix struct { // Output only. IDs of the annotation specs used in the confusion matrix. // For Tables CLASSIFICATION // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] // only list of [annotation_spec_display_name-s][] is populated. AnnotationSpecId []string `protobuf:"bytes,1,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // Output only. Display name of the annotation specs used in the confusion // matrix, as they were at the moment of the evaluation. For Tables // CLASSIFICATION // // [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type], // distinct values of the target column at the moment of the model // evaluation are populated here. DisplayName []string `protobuf:"bytes,3,rep,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. Rows in the confusion matrix. The number of rows is equal to // the size of `annotation_spec_id`. // `row[i].example_count[j]` is the number of examples that have ground // truth of the `annotation_spec_id[i]` and are predicted as // `annotation_spec_id[j]` by the model being evaluated. Row []*ClassificationEvaluationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=row,proto3" json:"row,omitempty"` // contains filtered or unexported fields }
Confusion matrix of the model running the classification.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor
deprecated
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage ¶
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Reset ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) String ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) String() string
type ClassificationEvaluationMetrics_ConfusionMatrix_Row ¶
type ClassificationEvaluationMetrics_ConfusionMatrix_Row struct { // Output only. Value of the specific cell in the confusion matrix. // The number of values each row has (i.e. the length of the row) is equal // to the length of the `annotation_spec_id` field or, if that one is not // populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field. ExampleCount []int32 `protobuf:"varint,1,rep,packed,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"` // contains filtered or unexported fields }
Output only. A row in the confusion matrix.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor
deprecated
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix_Row.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount() []int32
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage ¶
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) String ¶
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) String() string
type ClassificationType ¶
type ClassificationType int32
Type of the classification problem.
const ( // An un-set value of this enum. ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType = 0 // At most one label is allowed per example. ClassificationType_MULTICLASS ClassificationType = 1 // Multiple labels are allowed for one example. ClassificationType_MULTILABEL ClassificationType = 2 )
func (ClassificationType) Descriptor ¶
func (ClassificationType) Descriptor() protoreflect.EnumDescriptor
func (ClassificationType) Enum ¶
func (x ClassificationType) Enum() *ClassificationType
func (ClassificationType) EnumDescriptor
deprecated
func (ClassificationType) EnumDescriptor() ([]byte, []int)
Deprecated: Use ClassificationType.Descriptor instead.
func (ClassificationType) Number ¶
func (x ClassificationType) Number() protoreflect.EnumNumber
func (ClassificationType) String ¶
func (x ClassificationType) String() string
func (ClassificationType) Type ¶
func (ClassificationType) Type() protoreflect.EnumType
type ColumnSpec ¶
type ColumnSpec struct { // Output only. The resource name of the column specs. // Form: // // `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}/columnSpecs/{column_spec_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // The data type of elements stored in the column. DataType *DataType `protobuf:"bytes,2,opt,name=data_type,json=dataType,proto3" json:"data_type,omitempty"` // Output only. The name of the column to show in the interface. The name can // be up to 100 characters long and can consist only of ASCII Latin letters // A-Z and a-z, ASCII digits 0-9, underscores(_), and forward slashes(/), and // must start with a letter or a digit. DisplayName string `protobuf:"bytes,3,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. Stats of the series of values in the column. // This field may be stale, see the ancestor's // Dataset.tables_dataset_metadata.stats_update_time field // for the timestamp at which these stats were last updated. DataStats *DataStats `protobuf:"bytes,4,opt,name=data_stats,json=dataStats,proto3" json:"data_stats,omitempty"` TopCorrelatedColumns []*ColumnSpec_CorrelatedColumn `protobuf:"bytes,5,rep,name=top_correlated_columns,json=topCorrelatedColumns,proto3" json:"top_correlated_columns,omitempty"` // Used to perform consistent read-modify-write updates. If not set, a blind // "overwrite" update happens. Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"` // contains filtered or unexported fields }
A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:
- Tables
func (*ColumnSpec) Descriptor
deprecated
func (*ColumnSpec) Descriptor() ([]byte, []int)
Deprecated: Use ColumnSpec.ProtoReflect.Descriptor instead.
func (*ColumnSpec) GetDataStats ¶
func (x *ColumnSpec) GetDataStats() *DataStats
func (*ColumnSpec) GetDataType ¶
func (x *ColumnSpec) GetDataType() *DataType
func (*ColumnSpec) GetDisplayName ¶
func (x *ColumnSpec) GetDisplayName() string
func (*ColumnSpec) GetEtag ¶
func (x *ColumnSpec) GetEtag() string
func (*ColumnSpec) GetName ¶
func (x *ColumnSpec) GetName() string
func (*ColumnSpec) GetTopCorrelatedColumns ¶
func (x *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn
func (*ColumnSpec) ProtoMessage ¶
func (*ColumnSpec) ProtoMessage()
func (*ColumnSpec) ProtoReflect ¶
func (x *ColumnSpec) ProtoReflect() protoreflect.Message
func (*ColumnSpec) Reset ¶
func (x *ColumnSpec) Reset()
func (*ColumnSpec) String ¶
func (x *ColumnSpec) String() string
type ColumnSpec_CorrelatedColumn ¶
type ColumnSpec_CorrelatedColumn struct { // table as the in-context column. ColumnSpecId string `protobuf:"bytes,1,opt,name=column_spec_id,json=columnSpecId,proto3" json:"column_spec_id,omitempty"` CorrelationStats *CorrelationStats `protobuf:"bytes,2,opt,name=correlation_stats,json=correlationStats,proto3" json:"correlation_stats,omitempty"` // contains filtered or unexported fields }
Identifies the table's column, and its correlation with the column this ColumnSpec describes.
func (*ColumnSpec_CorrelatedColumn) Descriptor
deprecated
func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)
Deprecated: Use ColumnSpec_CorrelatedColumn.ProtoReflect.Descriptor instead.
func (*ColumnSpec_CorrelatedColumn) GetColumnSpecId ¶
func (x *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string
func (*ColumnSpec_CorrelatedColumn) GetCorrelationStats ¶
func (x *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats
func (*ColumnSpec_CorrelatedColumn) ProtoMessage ¶
func (*ColumnSpec_CorrelatedColumn) ProtoMessage()
func (*ColumnSpec_CorrelatedColumn) ProtoReflect ¶
func (x *ColumnSpec_CorrelatedColumn) ProtoReflect() protoreflect.Message
func (*ColumnSpec_CorrelatedColumn) Reset ¶
func (x *ColumnSpec_CorrelatedColumn) Reset()
func (*ColumnSpec_CorrelatedColumn) String ¶
func (x *ColumnSpec_CorrelatedColumn) String() string
type CorrelationStats ¶
type CorrelationStats struct { // The correlation value using the Cramer's V measure. CramersV float64 `protobuf:"fixed64,1,opt,name=cramers_v,json=cramersV,proto3" json:"cramers_v,omitempty"` // contains filtered or unexported fields }
A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.
func (*CorrelationStats) Descriptor
deprecated
func (*CorrelationStats) Descriptor() ([]byte, []int)
Deprecated: Use CorrelationStats.ProtoReflect.Descriptor instead.
func (*CorrelationStats) GetCramersV ¶
func (x *CorrelationStats) GetCramersV() float64
func (*CorrelationStats) ProtoMessage ¶
func (*CorrelationStats) ProtoMessage()
func (*CorrelationStats) ProtoReflect ¶
func (x *CorrelationStats) ProtoReflect() protoreflect.Message
func (*CorrelationStats) Reset ¶
func (x *CorrelationStats) Reset()
func (*CorrelationStats) String ¶
func (x *CorrelationStats) String() string
type CreateDatasetRequest ¶
type CreateDatasetRequest struct { // Required. The resource name of the project to create the dataset for. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // Required. The dataset to create. Dataset *Dataset `protobuf:"bytes,2,opt,name=dataset,proto3" json:"dataset,omitempty"` // contains filtered or unexported fields }
Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].
func (*CreateDatasetRequest) Descriptor
deprecated
func (*CreateDatasetRequest) Descriptor() ([]byte, []int)
Deprecated: Use CreateDatasetRequest.ProtoReflect.Descriptor instead.
func (*CreateDatasetRequest) GetDataset ¶
func (x *CreateDatasetRequest) GetDataset() *Dataset
func (*CreateDatasetRequest) GetParent ¶
func (x *CreateDatasetRequest) GetParent() string
func (*CreateDatasetRequest) ProtoMessage ¶
func (*CreateDatasetRequest) ProtoMessage()
func (*CreateDatasetRequest) ProtoReflect ¶
func (x *CreateDatasetRequest) ProtoReflect() protoreflect.Message
func (*CreateDatasetRequest) Reset ¶
func (x *CreateDatasetRequest) Reset()
func (*CreateDatasetRequest) String ¶
func (x *CreateDatasetRequest) String() string
type CreateModelOperationMetadata ¶
type CreateModelOperationMetadata struct {
// contains filtered or unexported fields
}
Details of CreateModel operation.
func (*CreateModelOperationMetadata) Descriptor
deprecated
func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use CreateModelOperationMetadata.ProtoReflect.Descriptor instead.
func (*CreateModelOperationMetadata) ProtoMessage ¶
func (*CreateModelOperationMetadata) ProtoMessage()
func (*CreateModelOperationMetadata) ProtoReflect ¶
func (x *CreateModelOperationMetadata) ProtoReflect() protoreflect.Message
func (*CreateModelOperationMetadata) Reset ¶
func (x *CreateModelOperationMetadata) Reset()
func (*CreateModelOperationMetadata) String ¶
func (x *CreateModelOperationMetadata) String() string
type CreateModelRequest ¶
type CreateModelRequest struct { // Required. Resource name of the parent project where the model is being created. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // Required. The model to create. Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"` // contains filtered or unexported fields }
Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].
func (*CreateModelRequest) Descriptor
deprecated
func (*CreateModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use CreateModelRequest.ProtoReflect.Descriptor instead.
func (*CreateModelRequest) GetModel ¶
func (x *CreateModelRequest) GetModel() *Model
func (*CreateModelRequest) GetParent ¶
func (x *CreateModelRequest) GetParent() string
func (*CreateModelRequest) ProtoMessage ¶
func (*CreateModelRequest) ProtoMessage()
func (*CreateModelRequest) ProtoReflect ¶
func (x *CreateModelRequest) ProtoReflect() protoreflect.Message
func (*CreateModelRequest) Reset ¶
func (x *CreateModelRequest) Reset()
func (*CreateModelRequest) String ¶
func (x *CreateModelRequest) String() string
type DataStats ¶
type DataStats struct { // The data statistics specific to a DataType. // // Types that are assignable to Stats: // // *DataStats_Float64Stats // *DataStats_StringStats // *DataStats_TimestampStats // *DataStats_ArrayStats // *DataStats_StructStats // *DataStats_CategoryStats Stats isDataStats_Stats `protobuf_oneof:"stats"` // The number of distinct values. DistinctValueCount int64 `protobuf:"varint,1,opt,name=distinct_value_count,json=distinctValueCount,proto3" json:"distinct_value_count,omitempty"` // The number of values that are null. NullValueCount int64 `protobuf:"varint,2,opt,name=null_value_count,json=nullValueCount,proto3" json:"null_value_count,omitempty"` // The number of values that are valid. ValidValueCount int64 `protobuf:"varint,9,opt,name=valid_value_count,json=validValueCount,proto3" json:"valid_value_count,omitempty"` // contains filtered or unexported fields }
The data statistics of a series of values that share the same DataType.
func (*DataStats) Descriptor
deprecated
func (*DataStats) GetArrayStats ¶
func (x *DataStats) GetArrayStats() *ArrayStats
func (*DataStats) GetCategoryStats ¶
func (x *DataStats) GetCategoryStats() *CategoryStats
func (*DataStats) GetDistinctValueCount ¶
func (*DataStats) GetFloat64Stats ¶
func (x *DataStats) GetFloat64Stats() *Float64Stats
func (*DataStats) GetNullValueCount ¶
func (*DataStats) GetStringStats ¶
func (x *DataStats) GetStringStats() *StringStats
func (*DataStats) GetStructStats ¶
func (x *DataStats) GetStructStats() *StructStats
func (*DataStats) GetTimestampStats ¶
func (x *DataStats) GetTimestampStats() *TimestampStats
func (*DataStats) GetValidValueCount ¶
func (*DataStats) ProtoMessage ¶
func (*DataStats) ProtoMessage()
func (*DataStats) ProtoReflect ¶
func (x *DataStats) ProtoReflect() protoreflect.Message
type DataStats_ArrayStats ¶
type DataStats_ArrayStats struct { // The statistics for ARRAY DataType. ArrayStats *ArrayStats `protobuf:"bytes,6,opt,name=array_stats,json=arrayStats,proto3,oneof"` }
type DataStats_CategoryStats ¶
type DataStats_CategoryStats struct { // The statistics for CATEGORY DataType. CategoryStats *CategoryStats `protobuf:"bytes,8,opt,name=category_stats,json=categoryStats,proto3,oneof"` }
type DataStats_Float64Stats ¶
type DataStats_Float64Stats struct { // The statistics for FLOAT64 DataType. Float64Stats *Float64Stats `protobuf:"bytes,3,opt,name=float64_stats,json=float64Stats,proto3,oneof"` }
type DataStats_StringStats ¶
type DataStats_StringStats struct { // The statistics for STRING DataType. StringStats *StringStats `protobuf:"bytes,4,opt,name=string_stats,json=stringStats,proto3,oneof"` }
type DataStats_StructStats ¶
type DataStats_StructStats struct { // The statistics for STRUCT DataType. StructStats *StructStats `protobuf:"bytes,7,opt,name=struct_stats,json=structStats,proto3,oneof"` }
type DataStats_TimestampStats ¶
type DataStats_TimestampStats struct { // The statistics for TIMESTAMP DataType. TimestampStats *TimestampStats `protobuf:"bytes,5,opt,name=timestamp_stats,json=timestampStats,proto3,oneof"` }
type DataType ¶
type DataType struct { // Details of DataType-s that need additional specification. // // Types that are assignable to Details: // // *DataType_ListElementType // *DataType_StructType // *DataType_TimeFormat Details isDataType_Details `protobuf_oneof:"details"` // Required. The [TypeCode][google.cloud.automl.v1beta1.TypeCode] for this type. TypeCode TypeCode `` /* 128-byte string literal not displayed */ // If true, this DataType can also be `NULL`. In .CSV files `NULL` value is // expressed as an empty string. Nullable bool `protobuf:"varint,4,opt,name=nullable,proto3" json:"nullable,omitempty"` // contains filtered or unexported fields }
Indicated the type of data that can be stored in a structured data entity (e.g. a table).
func (*DataType) Descriptor
deprecated
func (*DataType) GetDetails ¶
func (m *DataType) GetDetails() isDataType_Details
func (*DataType) GetListElementType ¶
func (*DataType) GetNullable ¶
func (*DataType) GetStructType ¶
func (x *DataType) GetStructType() *StructType
func (*DataType) GetTimeFormat ¶
func (*DataType) GetTypeCode ¶
func (*DataType) ProtoMessage ¶
func (*DataType) ProtoMessage()
func (*DataType) ProtoReflect ¶
func (x *DataType) ProtoReflect() protoreflect.Message
type DataType_ListElementType ¶
type DataType_ListElementType struct { // If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [ARRAY][google.cloud.automl.v1beta1.TypeCode.ARRAY], // then `list_element_type` is the type of the elements. ListElementType *DataType `protobuf:"bytes,2,opt,name=list_element_type,json=listElementType,proto3,oneof"` }
type DataType_StructType ¶
type DataType_StructType struct { // If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT], then `struct_type` // provides type information for the struct's fields. StructType *StructType `protobuf:"bytes,3,opt,name=struct_type,json=structType,proto3,oneof"` }
type DataType_TimeFormat ¶
type DataType_TimeFormat struct { // If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [TIMESTAMP][google.cloud.automl.v1beta1.TypeCode.TIMESTAMP] // then `time_format` provides the format in which that time field is // expressed. The time_format must either be one of: // * `UNIX_SECONDS` // * `UNIX_MILLISECONDS` // * `UNIX_MICROSECONDS` // * `UNIX_NANOSECONDS` // (for respectively number of seconds, milliseconds, microseconds and // nanoseconds since start of the Unix epoch); // or be written in `strftime` syntax. If time_format is not set, then the // default format as described on the type_code is used. TimeFormat string `protobuf:"bytes,5,opt,name=time_format,json=timeFormat,proto3,oneof"` }
type Dataset ¶
type Dataset struct { // Required. // The dataset metadata that is specific to the problem type. // // Types that are assignable to DatasetMetadata: // // *Dataset_TranslationDatasetMetadata // *Dataset_ImageClassificationDatasetMetadata // *Dataset_TextClassificationDatasetMetadata // *Dataset_ImageObjectDetectionDatasetMetadata // *Dataset_VideoClassificationDatasetMetadata // *Dataset_VideoObjectTrackingDatasetMetadata // *Dataset_TextExtractionDatasetMetadata // *Dataset_TextSentimentDatasetMetadata // *Dataset_TablesDatasetMetadata DatasetMetadata isDataset_DatasetMetadata `protobuf_oneof:"dataset_metadata"` // Output only. The resource name of the dataset. // Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The name of the dataset to show in the interface. The name can be // up to 32 characters long and can consist only of ASCII Latin letters A-Z // and a-z, underscores // (_), and ASCII digits 0-9. DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // User-provided description of the dataset. The description can be up to // 25000 characters long. Description string `protobuf:"bytes,3,opt,name=description,proto3" json:"description,omitempty"` // Output only. The number of examples in the dataset. ExampleCount int32 `protobuf:"varint,21,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"` // Output only. Timestamp when this dataset was created. CreateTime *timestamppb.Timestamp `protobuf:"bytes,14,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"` // Used to perform consistent read-modify-write updates. If not set, a blind // "overwrite" update happens. Etag string `protobuf:"bytes,17,opt,name=etag,proto3" json:"etag,omitempty"` // contains filtered or unexported fields }
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
func (*Dataset) Descriptor
deprecated
func (*Dataset) GetCreateTime ¶
func (x *Dataset) GetCreateTime() *timestamppb.Timestamp
func (*Dataset) GetDatasetMetadata ¶
func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata
func (*Dataset) GetDescription ¶
func (*Dataset) GetDisplayName ¶
func (*Dataset) GetExampleCount ¶
func (*Dataset) GetImageClassificationDatasetMetadata ¶
func (x *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata
func (*Dataset) GetImageObjectDetectionDatasetMetadata ¶
func (x *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata
func (*Dataset) GetTablesDatasetMetadata ¶
func (x *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata
func (*Dataset) GetTextClassificationDatasetMetadata ¶
func (x *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata
func (*Dataset) GetTextExtractionDatasetMetadata ¶
func (x *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata
func (*Dataset) GetTextSentimentDatasetMetadata ¶
func (x *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata
func (*Dataset) GetTranslationDatasetMetadata ¶
func (x *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata
func (*Dataset) GetVideoClassificationDatasetMetadata ¶
func (x *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata
func (*Dataset) GetVideoObjectTrackingDatasetMetadata ¶
func (x *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata
func (*Dataset) ProtoMessage ¶
func (*Dataset) ProtoMessage()
func (*Dataset) ProtoReflect ¶
func (x *Dataset) ProtoReflect() protoreflect.Message
type Dataset_ImageClassificationDatasetMetadata ¶
type Dataset_ImageClassificationDatasetMetadata struct { // Metadata for a dataset used for image classification. ImageClassificationDatasetMetadata *ImageClassificationDatasetMetadata `protobuf:"bytes,24,opt,name=image_classification_dataset_metadata,json=imageClassificationDatasetMetadata,proto3,oneof"` }
type Dataset_ImageObjectDetectionDatasetMetadata ¶
type Dataset_ImageObjectDetectionDatasetMetadata struct { // Metadata for a dataset used for image object detection. ImageObjectDetectionDatasetMetadata *ImageObjectDetectionDatasetMetadata `protobuf:"bytes,26,opt,name=image_object_detection_dataset_metadata,json=imageObjectDetectionDatasetMetadata,proto3,oneof"` }
type Dataset_TablesDatasetMetadata ¶
type Dataset_TablesDatasetMetadata struct { // Metadata for a dataset used for Tables. TablesDatasetMetadata *TablesDatasetMetadata `protobuf:"bytes,33,opt,name=tables_dataset_metadata,json=tablesDatasetMetadata,proto3,oneof"` }
type Dataset_TextClassificationDatasetMetadata ¶
type Dataset_TextClassificationDatasetMetadata struct { // Metadata for a dataset used for text classification. TextClassificationDatasetMetadata *TextClassificationDatasetMetadata `protobuf:"bytes,25,opt,name=text_classification_dataset_metadata,json=textClassificationDatasetMetadata,proto3,oneof"` }
type Dataset_TextExtractionDatasetMetadata ¶
type Dataset_TextExtractionDatasetMetadata struct { // Metadata for a dataset used for text extraction. TextExtractionDatasetMetadata *TextExtractionDatasetMetadata `protobuf:"bytes,28,opt,name=text_extraction_dataset_metadata,json=textExtractionDatasetMetadata,proto3,oneof"` }
type Dataset_TextSentimentDatasetMetadata ¶
type Dataset_TextSentimentDatasetMetadata struct { // Metadata for a dataset used for text sentiment. TextSentimentDatasetMetadata *TextSentimentDatasetMetadata `protobuf:"bytes,30,opt,name=text_sentiment_dataset_metadata,json=textSentimentDatasetMetadata,proto3,oneof"` }
type Dataset_TranslationDatasetMetadata ¶
type Dataset_TranslationDatasetMetadata struct { // Metadata for a dataset used for translation. TranslationDatasetMetadata *TranslationDatasetMetadata `protobuf:"bytes,23,opt,name=translation_dataset_metadata,json=translationDatasetMetadata,proto3,oneof"` }